

ANNEXES 2014

CHAPTER 1

LEFT:

On October 31, 2012, NASA's Curiosity rover used the Mars Hand Lens Imager to capture this set of 55 high-resolution images, which were stitched together to create this full-color self-portrait. Image Credit: NASA

The NASA science program seeks to unravel the mysteries of our Sun, Earth,

solar system, and the universe—out to its farthest reaches and back to its earliest moments of existence. Image Credit: NASA/Jenny Mottar

CHAPTER 2

LEFT:

A 'Blue Marble' image of the Earth taken from the Visible Infrared Imaging Radiometer Suite instrument aboard Suomi NPP (Suomi National Polar-Orbiting Partnership).

Image Credit: NASA

NASA launched the Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) over Halley Research Station in February 2014 to float above Antarctica and observe magnetic fields to augment measurements from the Van Allen Probes spacecraft.

Image Credit: NASA

Developed in conjunction with Homeland Security's Science and Technology Directorate, the prototype technology called Finding Individuals for Disaster and Emergency Response (FINDER) is based on remote sensing radar tech® nology developed by the NASA Jet Propulsion Laboratory. FINDER can locate individuals buried as deep as 30 feet (9 meters) in crushed materials or hid⊠ den behind 20 feet (6 meters) of solid concrete. Image Credit: NASA/Bill Ingalls

> National Policy Direction on Earth and Space Science Recommendations from the U.S. Scientific Community

CHAPTER 3

LEFT:

On August 31, 2012 a long filament coronal mass ejection (CME) erupted from the Sun traveling at over 900 miles per second. The CME did not travel directly toward Earth, but did connect with Earth's magnetic en vironment, or magnetosphere, causing aurora to appear. Image Credit: NASA

NASA's 2014 strategic plan outlines the following science goals for the Agency:

Principles

competition. Appendix C identifies the categories for each SMD program/strategic mission line. Suborbital programs, comprising sounding rockets, balloons, and aircraft, provide complementary observations, opportunities for innovative instrument demonstration, and a means for workforce development, as highlighted by the NRC in its report Strategies

Design and successfully implement programs that accomplish breakthrough science and applications.

Challenges

Figure 3.1 SMD missions that excelled in managing cost and schedule *Formerly RBSP

Figure 3.1 (Continued) SMD missions that excelled in managing cost and schedule *Formerly RBSP

Satellite data in this visualization are from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, which contribute to a vegetation index that allows reß searchers to track changes in plant growth over large areas. Of the 10 million square miles (26 million square kilometers) of northern vegetated lands deß picted, 34 to 41 percent showed increases in plant growth (green and blue), 3 to 5 percent showed decreases in plant growth (orange and red), and 51 to 62 percent showed no changes (yellow) over the past 30 years.

Image Credit: NASA's Goddard Space Flight Center Scientific Visualization Studio

Flying at an altitude of approximately 204 miles above Earth, the expedition 32 crew onboard the International Space Station (ISS) recorded a series of images of Aurora Australis on July 15, 2012. The Canadarm2 robot arm is in the foreground. Image Credit: NASA

This artist's concept shows the Wide-field Infrared Survey Explorer, or WISE spacecraft, in Earth orbit. WISE was decommissioned after it successfully completed its original astrophysics mission in 2011. In September 2013, engineers reactivated the mission to hunt for more asteroids and comets in a project called Near Earth Objects WISE, or NEOWISE. Image Credit: NASA

CHAPTER 4

LEFT:

This image of the Horsehead Nebula was taken in infrared light by the Hubble Space Telescope in honor of the 23rd anniversary of Hubble's launch. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that are easily seen in infrared light.

Image Credit: NASA/STScI

Heliophysics Image Credit: NASA

Solar-Terrestrial Probes Program Figure 4.1 NASA Heliophysics Missions

Living With a Star Program

STEREO (2) SOHO-ESA RHESSI Cluster-ESA (4) Formulation Implementation Primary Ops Extended Ops ACE SDO GOLD ICON AIM IBEX

	CINDI	
Solar Probe Plus	TIMED	TWINS (2)

THEMIS (3)

Hinode-JAXA Van Allen Probes (2) Voyager (2) Solar Orbiter-ESA WIND Geotail-JAXA SET-1 IRIS ARTEMIS (2) MMS (4)

Heliophysics Explorer Program

Heliophysics Research Program

Table 4.1 Current Heliophysics Missions

Mission— Launch Year (Extended or Prime), Partners Solar-Terrestrial Physics Program	Objective
Thermosphere, lonosphere, Mesosphere, Energetics, and Dynamics (TIMED)—2001 (Extended)	SExplores the Earth's Mesosphere and Lower Thermosphere (60–180 kilometers up), to understand the transfer of energy into and out of these regions and the basic structure that results from the energy transfer into the region.
Hinode (Solar B)—2006 (Extended) in partnership with Japan and the United Kingdom	Studies the generation, transport, and dissipation of magnetic energy from the photosphere to the corona to record how energy stored in the Sun's magnetic field is released, either gradually or violently, as the field rises into the Sun's outer atmosphere.

Solar Terrestrial Relations Observatory (STEREO)— 2006 (Extended) in partnership with France, Switzerland, United Kingdom, Germany, Belgium, DOD	Traces the flow of energy and matter from the Sun to Earth with two space-based observatories. Reveals the 3D structure of coronal mass ejections and the reasons why they happen. STEREO observations are used for space weather forecasting by NOAA.
Star Program	
Solar Dynamics Observatory (SDO)—2010 (Prime)	Studies the creation of solar activity and how space weather results from that activity by measuring the Sun's interior, magnetic field, the hot plasma of the solar corona, and solar spectral irradiance.
Van Allen Probes (Radiation Belt Storm Probes)— 2012 (Prime) in partnership with Czech Republic	Use two identical spacecraft in elliptical orbits to provide an understanding, ideally to the point of predictability, of how populations of relativistic electrons and penetrating ions in space form or change in response to variable inputs of energy from the Sun. It is anticipated that Van Allen Probes observations will be used for space weather "nowcasting" by NOAA.
Heliophysics Explorer	
Program Advanced Composition Explorer (ACE)—1997 (Extended)	Observes particles of solar, interplanetary, interstellar and galactic origins. Solar wind observations are used on an operational basis for space weather forecasting by both NOAA and USAF.

Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI)— 2002 (Extended)	Advances our understanding of the fundamental high-energy processes at the core of the solar flare problem by imaging flares in x and gamma rays and obtaining a detailed energy spectrum at each point of the image.
Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS)—2006 and 2008 (Extended) in partnership with National Reconnaissance Office (NRO), Germany	Enables the 3-D visualization and the resolution of large scale structures and dynamics within the magnetosphere by imaging the charge exchange of neutral atoms over a broad energy range, using two identical instruments on two widely spaced high- altitude, high- inclination spacecraft
Time History of Events and Macroscale Interactions during Substorms (THEMIS)— 2007 (Extended) in partnership with Germany, France, and Austria	Originally used five identically instrumented spacecraft to answer questions concerning the nature of the sub-storm instabilities that abruptly and explosively release solar wind energy stored within the Earth's magnetotail. Two of the five spacecraft have been re- purposed as the ARTEMIS mission to study the space weather environment around the Moon.
Aeronomy of Ice in the Mesosphere (AIM)—2007 (Extended)	Explores Polar Mesospheric Clouds, which form an icy membrane at the edge of Earth's atmosphere, to find out why they form and why they are changing

Table 4.1 (Continued) Current Heliophysics Missions

Mission— Launch Year (Extended or Prime), Partners Heliophysics Explorer Program (Continued)	Objective
	Explores Polar
Aeronomy of Ice in the Mesosphere (AIM)—2007 (Extended)	Mesospheric Clouds, which form an icy membrane at the edge of Earth's atmosphere, to find out why they form and why they are changing
Coupled Ion- Neutral Dynamics Investigation (CINDI) —2008 (Extended) in partnership with USAF	Uncovers the role of ion-neutral interactions in the generation of small and large-scale electric fields in the Earth's upper atmosphere.
Interstellar Boundary Explorer (IBEX)— 2008 (Extended) in partnership with Switzerland	Measures energetic neutral atoms created at the boundary that separates our heliosphere from the local interstellar medium, giving us the first evolving images of the heliosphere's outer edge and surroundings.
Interface Region Imaging Spectrograph (IRIS)—2013 (Prime) in partnership with Norway	Increases our understanding of energy transport into the corona and solar wind and provides an archetype for all stellar atmospheres by tracing the flow of energy and plasma through the chromosphere and transition region into the corona using spectrometry and imaging.
Heliophysics Research	
Program* Voyager— 1977 (Extended)	The Voyager Interstellar Mission explores the outer heliosphere, heliosheath and now the interstellar medium with plasma, energetic particle, magnetic field and plasma wave instrumentation. Among them, the two Voyagers hold the records of the longest- operating and the most distant spacecraft.

Geotail— 1992 (Extended) in partnership with Japan	Studies the dynamics of the Earth's magnetotail over a wide range of distances and measures global energy flow and transformation in the magnetotail.
Wind—1994 (Extended) in partnership with France	Measures solar radio bursts, solar wind and energetic particle properties, and complements ACE near the Lagrange 1 (L1) point. It also supports investigations of Gamma ray bursts in tandem with the Astrophysics SWIFT Gamma-ray Explorer mission.
Solar and Heliospheric Observatory (SOHO)— 1995 (Extended) in partnership with ESA	Studies the internal structure of the Sun, its extensive outer atmosphere and the origin of the solar wind and solar energetic particles. SOHO observations are used for space weather forecasting by NOAA.
Cluster-II— 2000 (Extended) in partnership with ESA	The four identical Cluster II satellites study the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission is able to collect three- dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae.

Missions listed either existed before or were part of an international partnership outside the current Heliophysics Division's implementation structure.

TOP: Voyager 1's plasma wave instrument detected vibrations of dense in® terstellar plasma, or ionized gas, from October to November 2012 and April to May 2013. The graphic shows the frequency of the waves, which indicates the density of the plasma. Image Credit: NASA/JPL-Caltech/University of lowa

BOTTOM: This artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space, or the space between stars. Image Credit: NASA/JPL-Caltech TOP: NASA's Interstellar Boundary Explorer (IBEX) recently mapped the boundaries of the solar system's tail (the heliotail). This data from IBEX shows what it observed looking down the heliotail. The yellow and red colors represent areas of slow-moving particles, and the blue represents the fastmoving particles. Image Credit: NASA/IBEX BOTTOM: A new radiation belt has been discovered above Earth; it is shown here using actual data as the middle arc of

orange and red of the three arcs seen on each side of the Earth. The new belt was observed for the first time by Relativistic Electron Proton Telescopes (REPT) flying on NASA's twin Van Allen Probes. Image Credit: NASA Table 4.2 Heliophysics Missions in Formulation or Development	
ective	
sists of four tically umented cecraft that use Earth's inetosphere laboratory to y the ophysics of e amental ma cesses: inetic nection, rgetic particle eleration, and ulence.	
ove the ineering roach to mmodate / or mitigate effects of r variability pacecraft gn and rations, offically ionstrate roved tware ormance in space ation ronment.	

•

from a distance closer than any spacecraft previously has. This mission will explore the inner solar system from high latitudes to improve the understanding of how the Sun determines the environment of the inner solar system and how fundamental plasma physical Solar Orbiter processes Collaboration operate near the (SOC)-NLT Sun. To answer 2018^{*} in these questions, partnership with it is essential to ESA make in-situ measurements of the solar wind plasma, fields, waves, and energetic particles close enough to the Sun that they are still relatively unprocessed, and to connect the in situ measurements with remote sensing of the near-Sun atmosphere. The SPP will fly into the Sun's atmosphere (or corona) and employ a combination of in-situ measurements and imaging to Solar Probe achieve the Plus (SPP)mission's primary 2018 in partnership with scientific goal: to understand how France, the Sun's corona Germany, and is heated and Belgium how the solar wind is accelerated. SPP will revolutionize our knowledge of the physics of the origin and evolution of the solar wind. Reflects the Agency baseline commitment to launch no later than (NLT) the year identified. Table 4.2 (Continued) Heliophysics Missions in Formulation or Development Mission Launch Year (Extended or Objective Prime), Partners Heliophysics Explorer Program

Study the Sun

lonospheric Connection (ICON)— 2017 in partnership with Belgium	ICON will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. ICON will employ a revolutionary concept of combining remote optical imaging and in situ measurements of the plasma at points where these are tied together by Earth's magnetic field. With these measurements, ICON will simultaneously retrieve all of the properties of the system that both influence and result from the dynamical and chemical coupling of the atmosphere.
Global-scale Observations of the Limb and Disk (GOLD)— 2017	The GOLD mission of opportunity will fly an ultraviolet imaging spectrograph on a geostationary satellite to measure densities and temperatures in Earth's thermosphere and ionosphere. GOLD will perform unprecedented imaging of the weather of the upper atmosphere and examine the response of the upper atmosphere to forcing from the Sun, the magnetosphere.

Artist's impression of SPP, its solar panels folded into the shadows of its protective shield, gathering data on its approach to the Sun. As SPP approaches the Sun, its revolutionary carbon-composite heat shield must withstand temperatures exceeding 2,550 degrees Fahrenheit and blasts of intense radiation. Image Credit: NASA/John Hopkins University/Applied Physics Laboratory TOP: The four MMS spacecraft are stacked

TOP: The four MMS spacecraft are stacked in preparation for vibration test ing. Image Credit: NASA/GSFC

BOTTOM: This artist's concept depicts three of the four identical MMS mission spacecraft. Image Credit: NASA/JPL-Caltech Table 4.3 Heliophysics Future Missions Mission— Launch Year (Extended or Objective

Prime), Partners

Advance our understanding of the interstellar boundary and its interaction with the interstellar medium through remote sensing observation and unravel the mechanisms by which particles are energized.
Understand how lower atmospheric wave energy drives the variability and structure of the near-Earth plasma.
Determine how the magnetosphere- ionosphere- thermosphere system is coupled and responds to solar and magnetospheric forcing.
To characterize and understand the tightly coupled ionosphere- atmosphere as a regulator of nonlinear dynamics in the geospace system.
High priority science investigations, filling focused, but critical gaps in our knowledge
ary of Heliophysics eline ion ed Mission
is

.....

STEREO
Hinode
RHESSI
TIMED
Cluster
ACE SOHO
WIND
Geotail
Voyager

TIMELINE

2000 2003 2006 2009 2012

The extended missions depicted in Figure 4.2 are approved for continued operations based on a senior peer review conducted by scientists every two years to determine the scientific value and priority of further mission extensions.

An aurora on March 8, 2012, shimmering over snow-covered mountains in Faskrudsfjordur, Iceland. Image Credit: Jónína Óskarsdóttir

The term "space weather" refers to variable conditions on the Sun, in the solar wind, and in the near-space environment that can create risks for humans in space and cause disruption to electric power distribution on Earth and satellite operations, communications, and navigation. Modern society depends on a variety of tech nologies susceptible to the extremes of space weather. Strong electrical currents driven along the Earth's surface during geomagnetic events disrupt electric power grids and contribute to the corrosion of oil and gas pipelines. Changes in the ionosphere during geomagnetic storms interfere with high-frequency radio communications and GPS navigation Exposure of spacecraft to energetic soll lar particles can cause temporary operational anomalies, damage critical electronics, degrade solar arrays, and blind systems such as imagers, star trackers, and sci2entific instrumentation. Given the growing importance of space to our nation's economic well-being and security, it is of increasing importance that NASA and its partner agencies continue to advance our nation's capability to understand and predict space weather events.

Space weather forecasting in interplanetary space is crucial to NASA's human and robotic exploration ob jectives beyond Earth's orbit. Eventually, astronauts will travel to distant places where natural shielding like Earth's magnetic field is absent. NASA's plans to send astronauts to asteroids and Mars safely rely on our ability to successfully understand and predict space weather. Protection of humans in space is an operational activity within NASA's HEOMD. SMD collaborates with HEOMD's Space Radiation Analysis Group at NASA's Johnson Space Center, which is directly responsible for ensuring that the radiation exposure of astronauts remains below established safety limits.

In support of NOAA satellites and to enable NOAA to fulfill its responsibility for delivering operational space

weather forecasts and products to the nation, NASA research spacecraft (e.g., ACE, STEREO, SOHO, SDO, and Van Allen Probes missions) supply real-time space weather data. Other partnerships include the CINDI in[®] strument NASA supplied for an Air Force satellite, and TWINS-A B the Agency provided for two National Reconnaissance Office satellites. NASA will continue to cooperate with other agencies to enable new knowledge in this area and to measure conditions in space critical to both operational and scientific research Interagency coordination of space weather activities has been formalized through the National Space Weather Program Council. which is hosted by the Office of the Federal Coordinator for Meteorology. This multiagency organization comprised of representatives from ten feda eral agencies functions as a steering group responsible for tracking the progress of the National Space Weather Program. External constituencies requesting and making use of new knowledge and data from NASA's efforts in heliophysics include NOAA, the Department of Defense, and the Federal Aviation Administration. Space weather is of international importance and NASA is the U.S. representative at the United Nations (UN) Committee on the Peaceful Uses of Outer Space (UNCOPUOS) for space weather matters. This respond sibility includes leadership of the International Space Weather Initiative (ISWI), a UN initiative to advance space weather science by establishing a global space weather data and modeling network. NASA also serves on the Steering Committee of the International Living with a Star (ILWS), which includes 31 space agencies worldwide. ILWS provides world leadership for the coordination of solar and space physics missions, ob servations, and understanding.

Earth Science

Image Credit: NASA

Earth Systematic Missions Program Earth System Science Pathfinder Program

Figure 4.3 NASA Earth Science Missions CYGNSS ICESat-2 TEMPO GRACE-FO (2) SWOT PACE NI-SAR Formulation Implementation Primary Ops SAGE III (on ISS) SMAP SORCE OCO-2 TRMM QuikSCAT Aquarius Suomi NPP Terra ACRIMSAT Landsat-7 (USGS) EO-1 (NOAA) Landsat-8 (USGS) GPM Aqua CloudSat CALIPSO Aura GRACE (2) OSTM/Jason 2 (NOAA)

Know as Operation IceBridge, NASA's annual airborne missions to the Arctic and Antarctica bridge the data gap between the Ice, Cloud, and Iand Elevation Satellite (ICESat—which ceased operating in 2009) and ICESat-2. Seen from the NASA P-3B on the Apr. 5, 2013 IceBridge survey flight, Helheim Glacier, one of the largest glaciers in Greenland, drains into the ocean through this fjord.

Image Credit: NASA

Applied Sciences Program SERVIR-Africa installed wireless sensor networks in Kenya to support the automated frost mapping system they designed and implemented. The near real-time frost mapping system identifies and displays frost-impacted areas by analyzing night time land surface temperature data from NASA's Moden® ate Resolution Imaging Spectrometers aboard the Terra and Aqua spacecraft, identifying areas with high potential for frost to the Kenya Meteorological Ser® vice and agriculture insurance companies. Image Credit: NASA/SERVIR-Africa

Earth Science Technology Program Table 4.4 Current Earth Science Missions

Mission— Launch Year (Extended or Objective Prime), Partners Earth Systematic Missions (ESM) Program

•••••••	First-time use of
Tropical Rainfall Measuring Mission (TRMM)— 1997 (Extended) in partnership with Japan	both active and passive microwave instruments has made TRMM the world's foremost satellite for the study of precipitation and associated storms and climate processes in the tropics.
Landsat-7— 1999 (Extended) in partnership with USGS	Spanning 40 years of multispectral imaging of the Earth's surface, Landsat 7 is part of the long history of land remote sensing spacecraft.
Quick Scatterometer (QuikSCAT)— 1999 (Extended)	QuikSCAT's SeaWinds instrument is a specialized microwave radar that measures near- surface wind speed and direction under all weather and cloud conditions over Earth's oceans. Having exceeded its design life by 8 years, QuikSCAT now serves as a transfer standard to calibrate other satellites.

Terra—1999 (Extended) in partnership with Japan and Canada	Studies clouds, water vapor, aerosol particles, trace gases, terrestrial and oceanic surface properties, biological productivity of the land and oceans, Earth's radiant energy balance, the interaction among them, and their effects on climate.
Earth Observing-1 (EO-1)—2000 (Extended)	Advanced land- imaging mission that demonstrates new instruments and spacecraft systems. The hyperspectral instrument (Hyperion) is the first of its kind to provide images of land-surface in more than 220 spectral colors.
Aqua—2002 (Extended) in partnership with Japan and Brazil	Observes the Earth's oceans, atmosphere, land, ice and snow covers, and vegetation, providing high measurement accuracy, spatial detail, and temporal frequency.
Solar Radiation and Climate Experiment (SORCE)— 2003 (Extended)	Provides state-of- the-art measurements of incoming X-ray, ultraviolet, visible, near-infrared, and total solar radiation. The measurements specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation.
Aura—2004 (Extended) in partnership with The Netherlands and the United Kingdom	Studies the chemistry and dynamics of the atmosphere with emphasis on the upper troposphere and lower stratosphere. Provides daily global observations of atmospheric ozone, air quality, and climate parameters.

	1
Ocean	I
Surface	į
Topography	•
Mission/Jason	1
2	
(OSTM/Jason	į
2)—2008	1
(Extended) in	ł
partnership	
with	•
EUMETSAT,	;
France, and NOAA	I
NOAA	,

Measures sea surface height by using a radar altimeter mounted on a low-Earth orbiting satellite Measurements of sea-surface height, or ocean surface topography, reveal the speed and direction of ocean currents and tell scientists how much of the Sun's energy is stored by the ocean.

EOS satellites Suomi the forthcomin National series of Joint Polar-Orbiting Polar Satellite Partnership System (JPSS (NPP)—2011 satellites. Suo (Prime) in NPP data are partnership being used for with NOAA climate resear

Serves as the bridge between the EOS satellites and the forthcoming series of Joint Polar Satellite System (JPSS) satellites. Suomi NPP data are being used for climate research and operational weather prediction.

Table 4.4 (Continued) Current Earth Science Missions

Mission—	10
Launch Year	Objective
Landsat Data Continuity Mission (LDCM)/ Landsat 8— 2013 (Prime) in partnership with USGS	Provides moderate- resolution measurements of the Earth's terrestrial and polar regions. Provides continuity with the Landsat land imaging data set. Provides data for land use planning and monitoring on regional to local scales, and supports disaster response and evaluations, and water use monitoring.
Global Precipitation Measurement (GPM)—2014 (Prime) in partnership with Japan	Next-generation observations of precipitation (rain and snow) worldwide every three hours, to advance understanding of the water and energy cycles and extend the use of precipitation data to directly benefit societly.

Earth System Science Pathfinder (ESSP) Program

	A
Gravity Recovery and Climate Experiment (GRACE)— 2002 (Extended) in partnership with Germany	Accurately maps variations in the Earth's gravity field. GRACE data is used to estimate global models for the variable Earth gravity field approximately every 30 days, and reveals changes in levels of large underground aquifers.
Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)— 2006 (Extended) in partnership with France	Combines an active lidar with passive infrared and visible imagers to study the role clouds and aerosols (airborne particles) play in weather, climate and air quality.
CloudSat— 2006 (Extended) in partnership with Canada	Provides a comprehensive characterization of the structure and composition of clouds and their effects on climate under all weather conditions using an advanced cloud profiling radar.
Earth Venture Sub-orbital-1 (EVS-1):	Five investigations selected through the first Earth Venture Suborbital opportunity are being conducted from 2010 through 2015.
Aquarius— 2011 (Prime) in partnership with Argentina	Measures global sea surface salinity with unprecedented precision. Monthly sea surface salinity maps give clues about changes in freshwater input and output to the ocean associ-ated with precipitation, evaporation, ice melting, and river runoff.

Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) Airborne Tropical Tropopause Experiment (ATTREX)

Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ)

Hurricane and Severe Storm Sentinel (HS3) The Earth Systematic Missions (ESM) Program encompasses the division's strategic and directed missions. Table 4.4 includes missions that were selected prior to the creation of the ESM Program Office, such as missions under the previously existing Earth Observing System (EOS) Program. The missions within the Earth System Science Pathfinder (ESSP) Program are competitively selected under the program itself or as Earth Venture missions. The midnight sun casts a golden glow on an iceberg and its reflection in Dis& ko Bay, Greenland. Much of Greenland's annual ice mass loss occurs through calving of such icebergs. Image Credit: University of Washington/Ian Joughin

The ravages of deforestation, wildfires, windstorms and insects on global forests during this century are revealed in unprecedented detail in a new study based on data from Landsat-7. The maps from the study are the first to document forest loss and gain using a consistent method around the globe, at high resolution. The forest cover maps also capture natural disturbances such as this 2011 tornado path in Alabama. Image Credit: NASA/GSFC Table 4.5 Earth Science Strategic Research Missions in Formulation and Development

. .:

Mission— Expected Launch Year, Partners Earth Systematic Missions (ESM) Program	Objective
Soil Moisture Active/Passive (SMAP)—NLT 2015*	Soil moisture and freeze-thaw for weather and hydrological cycle processes. Global stratospheric aerosols measurements, and measurements of ozone, water
Stratospheric Aerosol and Gas Experiment III (SAGE III- ISS)—NLT 2016*	vapor and nitrogen dioxide, to understand their significant roles in atmospheric radiative and chemical processes and monitor climate change. SAGE III is scheduled to fly to ISS aboard one of NASA's commercial Space X flights.
Ice Cloud and land Elevation Satellite-2 (ICESat-2)— LRD under review	Ice sheet height changes for climate change diagnosis and assessment of land carbon standing stock.
Gravity Recovery and Climate Experiment Follow-on (GRACE FO)—NLT 2018* in partnership with Germany	Continue high- resolution gravity field measurements; determine time variable gravity and mass re- distribution involved in Earth system component interactions.

Surface Water and Ocean Topography (SWOT)— 2020 in partnership with France and Canada	Oceanography and hydrology through broad swath altimetry. First global determination of the ocean circulation at high resolution and first global inventory of fresh water storage and its change.
Earth System Science Pathfinder (ESSP) Program	
Orbiting Carbon Observatory-2 (OCO-2)— NLT 2015*	Global atmospheric column CO measurement from space to help quantify CO fluxes. 2 2
Cyclone Global Navigation Satellite System (CYGNSS) Earth Venture Mission-1 (EVM-1)— NLT 2017*	Frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes to enable improvement in hurricane forecasting.
Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Venture Instrument-1 (EVI-1) —available in 2018 for flight as a hosted payload	TEMPO's measurements from geostationary orbit (GEO) of tropospheric ozone, ozone precursors, aerosols, and clouds will create a revolutionary dataset (hourly and at high spatial resolution) that provides understanding and improves prediction of air quality and climate forcing.

Reflects the Agency baseline commitment to launch NLT the year identified.

TOP LEFT:

This artist's concept depicts NASA's OCO-2 spacecraft. Image Credit: NASA/JPL

BOTTOM LEFT

: NASA's OCO-2 spacecraft is moved into a thermal vacuum chamber at Orbital Sciences Corporation's Satellite Manufacturing Facility in Gilbert, Ariz., for a series of environmental tests. The tests confirmed the in⊠ tegrity of the observatory's electrical connections and subjected the OCO-2 instrument and spacecraft to the extreme hot, cold and airless environment they will encounter once in orbit. Image Credit: NASA/JPL

TOP RIGHT:

The SMAP spacecraft and instrument, having just been put toX gether into what is called the "Observatory" in January 2014. The spinning portion of SMAP's instrument system is seen mounted on top of the rectanX gular, box-like structure of the spacecraft. Prominently featured in the upper portion of the instrument and on its right-hand side are the deployable reflecXtor antenna, which looks like a bundle of black-colored tubular elements, and the deployable boom above (also black in color), which will eventually support the antenna while spinning in space. Image Credit: NASA/JPL

SMAP: Understanding the Earth System through Interdisciplinary Synergies

NASA's SMAP mission will provide global measurements of soil moisture and the soil freeze/thaw state. The NRC Earth science decadal survey explains how SMAP will enable interdisciplinary

studies of the Earth system: Soil moisture serves as the memory at the land surface in the same way as seasurface temperature does at the ocean surface. The use of sea-surface temperature observations to initialize and constrain coupled ocean-atmosphere models has led to imporize tant advances in long-range weather and seasonal prediction. In the same way, high-resolution soil-moisture mapping will have transformative effects on Earth system science and applications (Entekhabi et al., 1999; Leese et al., 2001). As the ocean and at mosphere community synergies have led to substantial advances in Earth system understanding and improved prediction services, the availability of high-resolution mapping of surface soil moisture will be the link between the hydrology and atmospheric commul nities that share interest in the land interface. The availability of

Artist's concept of SMAP. Image Credit NASA/JPL

such observations will enable the emergence of a new generation of hydrologic models for applications in Earth system understanding and operational severe-weather and flood forecasting. Table 4.6 Future Earth Science Strategic Research Missions

Mission— Expected Launch Year, Ot Partners Earth Systematic Missions (ESM) Program

Objective

Sustained Solar irradiance measurements— Instrument of opportunity —No earlier than (NET) 2020	Responsibility transferred from NOAA to NASA in the FY2014 President's budget request to provide sustained solar irradiance measurements beginning in the 2020 timeframe. Will continue the 34 year measurement record that includes SORCE and the Total solar irradiance Calibration Transfer Experiment (TCTE).
Pre-Aerosol, Cloud, ocean Ecosystem (PACE)—NET 2020	Provide aerosol, cloud, and ocean color measurements until availability of decadal survey Tier 2 Aerosol-Clouds- Ecosystems mission.
NASA-India Space Research Organization Synthetic Aperture Radar (NI-SAR)—NET 2021 in partnership with India	NI-SAR (a.k.a. DESDynl Radar) mission to study solid Earth deformation (earthquakes, volcances, landslides), changes in ice (glaciers, sea ice) and changes in vegetation.
Strategic Research Mission— Expected	ed) Future Earth Science

Launch Year, Oble Partners Earth Systematic Missions (ESM) Program (Continued)

	Responsibility
	transferred from
	NOAA to NASA in
	the FY2014
	President's Budget
	Request to provide
	sustained
	measurements of
	the Earth's radiation budget
	that have been
	made by the
	Clouds and the
Earth's	Earth's Radiant
Radiation	System (CERES)
Budget-on	instruments on
JPSS-2-NET	TRMM, Terra,
2021	Aqua and Suomi
	NPP and are
	planned for the
	JPSS-1 in 2016.
	The Radiation
	Budget Instrument
	(RBI) to be
	provided by NASA
	for flight on JPSS-2
	in 2021 will be a
	follow-on to the CERES
	instruments.
	To extend global
	Landsat-quality
	multispectral and
	thermal infrared
	measurements
	beyond the
	expected operation
	of Landsat-8, NASA initiated, in
	FY 2014, the
	Sustainable Land
	Imaging
	Architecture Study,
	with support from
	USGS. The study
	will define the
	scope,
	measurement
	approaches, cost,
Future Land	and risk of a viable
Imaging—	long-term land
Under study	imaging system
	that will achieve
	national objectives.
	Evaluations and
	design activities will include
	consideration of a
	range of solutions
	including large and
	small dedicated
	spacecraft,
	formation flying,
	hosted
	instruments,
	integration of other
	compatible land
	imaging data sets,
	and international
	and private sector
-	collaborations.
	·····•

CLARREO will make highly accurate spectrally resolved measurements of reflected solar and thermally emitted radiation that are Climate directly traceable Absolute Radiance and System of Units Refractivity (SI) standards to Observatory achieve the (CLARREO) required levels of NET 2023 accuracy for quantification and characterization of the Earth's energy balance as an indicator of climate change on decadal scales. Tier 2 and 3 Missions-TBD

Earth System Science Pathfinder (ESSP) Program Future Earth

Venture Solicitations

- Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS)
- Geostationary Coastal and Air Pollution Events (GEO-CAPE)
- Hyperspectral Infrared Imager (HyspIRI)
- Aerosol-Clouds-Ecosystems
- Precipitation and All-weather Temperature and Humidity (PATH)
- Snow and Cold Land Processes (SCLP)
- Global Atmospheric Composition Mission (GACM)
- Three-Dimensional Tropospheric Winds (3D-Winds) (demo)
- Lidar Surface Topography (LIST)
- Gravity Recovery and Climate Experiment-II (GRACE-II)
- Earth Venture Suborbital (EVS)—2 in 2013 and at 4-year intervals
- Earth Venture Instrument (EVI)—2 in 2013 and at 18-month intervals
- Earth Venture Full Orbital Missions(EVM)—2 in 2015 and at 4year intervals

Figure 4.4 Summary of Earth Science Missions Earth Science Timeline TIMELINE Prime Mission Extended Mission 2000 2003 2006 2009 2012 2015 2018 2021 2024 The extended missions depicted in Figure 4.4 are approved for continued operations based on a senior peer review conducted by scientists every two years to determine the scientific value and priority of further mission extensions.

Funded by the Earth Science and Technology Office and Goddard Internal Research and Development Program, the airborne Lidar Surface Topography (LIST) Simulator is proving the technology needed to measure the height of Earth's surface to within 10 centimeters and at 5 meter resolution.

Image Credit: NASA/GSFC Artist's rendering of ISS-RapidScat instrument (inset), which will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. RapidScat will be installed on the end of the station's Columbus laboratory. Image Credit: NASA/JPL

SMD works in close partnership with the ISS Program to enable science observations from the ISS. The ISS provides the access to space and most on-orbit rel sources (power, data and communications instrument operations, and post-flight disposal). In some cases, ISS provides some or all of the initial hardware, while for others, SMD develops and delivers the hardware. In all cases SMD defines the science observations and funds the processing of the data into scientific observations and research results For Earth observations, the ISS provides a specific and unique perspective. Its mid-inclination orbit at +/- 51 degrees enables visibility of most of the population cent ters on the Earth, of all the tropical regions, and of many critical dynamic phenomena. The low altitude enables high-resolution observations, while the precessing orbit allows the ISS-mounted instruments to cross orbits with the extensive fleet of polar and geosynchronous Earth observing satellites, allowing ISS instruments to be cross checked and cross calibrated with those other observations. This capability is particularly important to develop and improve long-term data records that require consistency across generations of observing instrui ments in highly varying orbits

The ISS is useful for astrophysics research because it offers a large, stable platform that can support experil ments with large mass, large power requirements, high data rates, and modest pointing requirements, which would be difficult or impossible to support on a satellite bus. The ISS platform is most useful for particle astro@ physics and high energy astrophysics.

NASA will be making use of these capabilities for a num® ber of Earth and space observations. The Hyperspectral Imager for the Coastal Ocean (HICO) is operating now on ISS, making

measurements of coastal and ocean color. The ISS SERVIR Environmental Research and

Visualization System (ISERV) is providing useful images for use in disaster monitoring and assessment and en⊠ vironmental decision making. Future instruments on ISS include the Rapid Scatterometer

(RapidScat) instrument to continue ocean winds measurements, the Cloud- Aerosol Transport System (CATS) to make lidar aerosol measurements, the Lightning Imaging Sensor (LIS) that will measure global lightning (amount, rate, radiant enEergy) during both day and night, and the Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument to measure atmospheric ozone profiles, extending a 20+ year data record for NASA. In particular, the inclined orbit of ISS is well suited for obtaining latitudinal distributions of ozonedestroying gases using SAGE III's primary solar occultation viewing mode. For astrophysicists, the Cosmic Ray Energetics and Mass (CREAM) experiment will extend direct measure@ ments of cosmic rays to energies capable of generating gigantic air showers, which have mainly been observed with ground-based experiments with no elemental identi&fication. The Neutron star Interior Composition ExploreR (NICER) mission will explore the exotic states of matter inside neutron stars, where density and pressure are higher than in atomic nuclei, confronting theory with unique observational constraints.

Looking to the future, NASA plans welcome proposals for instruments or even small missions that are best adapted to the ISS. The Earth Venture Mission (EVM) and Earth Venture Instrument (EVI) solicitations are released regularly and are open to all platforms, including the ISS. Similarly, the Astrophysics and Heliophysics Explorer AOs allow for ISS-based Mission of Opportunity proposi als. The ISS Program has been working with the SMD to improve the utility and usability of the ISS as a sciilence observation platform, which should support more substantial Earth and space observations from the ISS.

Planetary Science

Image Credit: NASA/JPL

Discovery Program New Frontiers Program Mars Exploration Program

Figure 4.5 NASA Planetary Science Missions Juno Lunar Reconnaissance Orbiter MESSENGER Formulation Implementation Primary Ops Extended Ops

BepiColumbo	Ro
(ESA)	(E

Cassini
(NASA/ESA)

Mars	M M E>
Odyssey	(E
	-

OSIRIS-REx

 Opportunity	C
 Rover	R

2020 NEO-WISE LADEE

> Planetary Science Research and Analysis Program

Near-Earth Objects Program

MARS EARTH

This set of images compares the Link

outcrop of rocks on Mars with similar rocks seen on Earth. The image of Link, obtained by NASA's Curiosity rover, shows rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size, within the rock outcrop. Erosion of the outcrop results in gravel clasts that fall onto the ground, creating the gravel pile at left. The Link outcrop's characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. A typical Earth example of sedimentary conglomerate formed of gravel fragments in a stream is shown on the right.

Image Credit: NASA/JPL

Table 4.7 Current Planetary Science Missions		
Mission— Expected Launch Year, Partners	Objective	
Discovery Program		
Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER)— 2004 (Extended)	Image all of Mercury for the first time, as well as gather data on the composition and structure of Mercury's crust, its geologic history, the nature of its active magnetosphere and thin atmosphere, and the makerup of its core and the materials near its poles.	
Venus Express— 2005 (Extended) ESA mission with U.S. participation	Investigating the noxious atmosphere and clouds in detail and making global maps of the planet's surface temperatures	
Dawn—2007 (Prime)	Characterizing the conditions and processes of the solar system's earliest epoch by investigating in detail the dwarf-planets (Ceres and Vesta), which have remained intact since their formation.	

Lunar Reconnaissance Orbiter (LRO)– 2009 (Extended) in partnership with HEOMD	favorable terrain, and the environment necessary for safe future robotic and human lunar missions.
	Study the dynamics of the atmosphere of Venus from orbit, particularly the upper atmosphere super-rotation and the three- dimensional motion in the lower part of the atmosphere, using multi- wavelength imaging. Measure atmospheric temperatures and look for evidence of volcanic activity and lightning. ed) Current Planetary
Science Missions	
Mission— Expected Launch Year, Partners	Objective
Mission— Expected Launch Year,	
Mission— Expected Launch Year, Partners New Frontiers	
Mission— Expected Launch Year, Partners New Frontiers Program	Objective Make the first reconnaissance of Pluto, Charon, and one or more Kuiper Belt objectives to reveal the origin and evolution of our planetary

Mars Odyssey— 2001 (Extended)	Globally map the amount and distribution of many chemical elements and minerals that make up the Martian surface. Maps of hydrogen distribution led scientists to discover vast amounts of water ice in the polar regions buried just beneath the surface.
Mars Express— 2003 (Extended) ESA mission with U.S. participation	Answer fundamental questions about the geology, atmosphere, surface environment, history of water and potential for life on Mars.
Opportunity (Mars Exploration Rover)—2003 (Extended) in partnership with Germany	Perform on-site geological investigations on Mars to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. Now in the seventh year of a 90-day mission, Opportunity is poised to explore the giant crater Endeavor.
Mars Reconnaissance Orbiter (MRO)— 2005 (Extended) in partnership with Italy	Provide information about the surface, subsurface, and atmosphere of Mars. Characterizes potential landing sites for other missions including MSL. Detected evidence that water persisted on the surface of Mars for a long period of time, and is examining underground Martian ice.
Mars Science Laboratory (MSL)/Curiosity rover—2011 (Prime) in partnership with Canada, France, Germany, Spain and Russia	Assess whether Mars ever was, or is still today, an environment able to support microbial life. MSL's mission is to determine the planet's "habitability."

Mars Atmosphere and Volatile Evolution (MAVEN) —2013 (Prime) in partnership with France Strategic and Other Missions	Explore Mars's upper atmosphere, ionosphere and interactions with the Sun and solar wind.
Cassini—1997 (Extended) in partnership with ESA and Italy	Completed its first extended mission at Saturn in 2010; its second mission extension will allow for the first study of a complete seasonal period. (A Saturn year is 30 Earth years).
Rosetta—2004 (Prime) ESA mission with U.S. participation	An orbiter and lander that will investigate the origin of comets. Will rendezvous with Comet 67P/Churyumov- Gerasimenko and remain in close proximity to the icy nucleus as it plunges toward the Sun. A small lander will be released onto the surface of the comet for in situ investigations of the chemistry and formation of volatiles.
Near Earth Object Wide- field Infrared Survey Explorer (NEOWISE)— 2009 (Extended)	Search for potentially hazardous NEOs. Although the solid hydrogen is gone, NEOWISE can still operate at its two shortest infrared wavelengths, returning valuable data on the numbers, orbits, sizes, and compositions of asteroids and comets.
Lunar Atmosphere and Dust Environment Explorer (LADEE)—2013 (Prime)	Orbit the Moon to characterize the atmosphere and lunar dust environment. LADEE aims to determine the global density, composition, and time variability of the fragile lunar atmosphere before it is perturbed by further surface exploration activity.

TOP LEFT:

The underlaying pixels in this image indicate plumes of water vapor detected over Europa's south pole in observations taken by the Hub⊠ ble Space Telescope in December 2012. The superimposed image of Europa was take by the Galileo spacecraft.

Image Credit: NASA/ESA/JPL/STScI

BOTTOM LEFT:

Comet ISON, named after the International Scientific Optical Network (the Russian instrument array that first observed the comet) comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Helio&spheric Observatory. The image of the Sun at the center is from NASA's SDO satellite. Image Credit:

ESA/NASA/SOHO/SDO/GSFC

TOP RIGHT:

Using a precision formation-flying technique, the twin GRAIL spacecraft mapped the moon's gravity field, as depicted in this artis's rem& dering. Image Credit: NASA/JPL

Table 4.8 Planetary Science Missions in Formulation and Development

Mission— Expected Launch Year, Partners	Objective
Discovery	
Program	
Hayabusa 2— 2014 JAXA mission with U.S. participation	Hayabusa 2 will collect surface and possible subsurface materials from asteroid 1999 JU3 and return the samples to Earth in a capsule for analysis in 2020.
BepiColumbo— 2015 ESA mission with U.S. participation	Study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury
Interior Exploration Investigations, Geodesy and Heat Transport (InSight)—NLT 2016*, in partnership with France and Germany New Frontiers	Study the deep interior of Mars to address fundamental issues of planet formation and evolution. Investigate the dynamics of Martian tectonic activity and meteorite impacts and compare to like phenomena on Earth.
Program	

mission with NASA to Ganymede and Moons Explorer Jupiter system. (JUICE)—2022 NASA will supply ESA mission with U.S. participation ner U.Sled science mars science participation instrument and hardware for two European instruments. Mars Exploration Program ESA-led joint mission with Russia; Mars orbiter with entry, descent, landing system (EDLS) tech demo; and U.S. participation participation NASA providing Electra telecom package. ExoMars ESA-led joint mission with U.S. participation ExoMars system (EDLS) tech demo; and U.S. participation Mars ESA-led joint mission with Russia; NASA to provide a critical science instrument, the Mars Organic with Mars Rover—2018 ESA-led joint mission with Russia; NASA to provide a critical science instrument, the Mars Organic with Q20 NASA Molecule Analyzer (MOMA) mass spectrometer to the rover payload. Re-fly MSL rover and sky-crane ELS. Rover will 2020 NASA have different mission with instrument suite possible international caching system contribution Reflects the Agency baseline commitment to launch NLT the year identified. With the Mars Curiosity rover, NASA demonstrated a specialized landing system that delivered a ready-to-operate rover. NASA's new Mars rover, scheduled for 2020, will be much more capable than Curi	Origins Spectral Interpretation, Resource Identification and Security Regolith Explorer (OSIRIS-REx)— NLT 2016*, in partnership with Canada	detail, and bring back a sample to Earth in 2023. This sample will help with investigating planet formation and the origin of life, and aid in understanding asteroids that can impact Earth.
Program ExoMars Trace Gas Orbiter— 2016 ESA mission with U.S. participation ESA-led joint mission with U.S. participation ESA-led joint system (EDLS) tech demo; and telecom package. ExoMars Rover—2018 ESA-led joint mission with U.S. participation ESA-led joint mission with Russia, Mars orbiter with entry, descent, landing genetic demo; and telecom package. ExoMars Rover—2018 ESA-led joint mission with Russia, NASA to provide a critical science instrument, the Mars Organic Analyzer (MOMA) mass Molecule Analyzer (MOMA) mass Participation Mars Organic With Molecule Analyzer (MOMA) mass Participation Re-fly MSL rover and sky-crane Mars Rover— 2020 NASA have different mission with instrument suite possible international contribution EDLS. Rover will acaching system contribution for future potential sample return. Reflects the Agency baseline commitment to launch NLT the year identified. With the Mars rover, NASA demonstrated a specialized landing system that delivered a ready-to-operate rover. V2020, will be much more capable than Curiosity, and will in⊠ clude a caching system for future potential sample return. Image Credit: NASA Table 4.9 Future Planetary Science Mission— Expected	Moons Explorer (JUICE)—2022 ESA mission with U.S. participation	NASA to Ganymede and Jupiter system. NASA will supply one U.Sled science instrument and hardware for two European
ExoMars Trace Gas Orbiter— 2016 ESA mission with Pussia; Mars orbiter with entry, descent, landing system (EDLS) tech demo; and telecom package. NASA providing Electra telecom package. ExoMars ESA-led joint mission with U.S. Participation ESA-led joint mission with Russia: NASA to provide a critical science instrument, the Mars Organic ExoMars Fore-2018 instrument, the Mars Organic Bover—2018 Analyzer (MOMA) mass spectrometer to the rover payload. Participation Re-fly MSL rover and sky-crane Mars Rover— 2020 NASA Re-fly MSL rover and sky-crane Mars Rover— Eturn. EDLS. Rover will caching system contribution Reflects the Agency baseline commitment to launch NLT the year identified. With the Mars Curiosity rover, NASA demonstrated a specialized landing system that delivered a ready-to-operate rover. NASA's new Mars rover, scheduled for 2020, will be much more capable than Curiosity, and will in Clude a caching system for future potential sample return. Image Credit: NASA Table 4.9 Future Planetary Science Missions	Exploration	
ExoMars mission with Rover—2018 provide a critical Science instrument, the Mars Organic Molecule U.S. Molecule participation mass spectrometer to the rover payload. Re-fly MSL rover Mars Rover— EDLS. Rover will 2020 NASA have different mission with instrument suite possible including a international caching system contribution for future potential sample return. Reflects the Agency baseline commitment to launch NLT the year identified. With the Mars Curiosity rover, NASA demonstrated a specialized landing system that delivered a ready-to-operate rover. NASA's new Mars rover, cabelle for 2020, will be much more capable than Curiosity, and will in⊠ clude a caching system for future potential sample return. Image Credit: NASA Table 4.9 Future Planetary Science Mission— Expected	Gas Orbiter— 2016 ESA mission with U.S.	mission with Russia; Mars orbiter with entry, descent, landing system (EDLS) tech demo; and telecom package. NASA providing Electra telecom
and sky-crane Mars Rover— Data Standard Standa	Rover—2018 ESA mission with U.S.	mission with Russia. NASA to provide a critical science instrument, the Mars Organic Molecule Analyzer (MOMA) mass spectrometer to the rover
Iaunch NLT the year identified. With the Mars Curiosity rover, NASA demonstrated a specialized landing system that delivered a ready-to-operate rover. NASA's new Mars rover, scheduled for 2020, will be much more capable than Curiosity, and will in⊠ clude a caching system for future potential sample return. Image Credit: NASA Table 4.9 Future Planetary Science Missions Mission— Expected	2020 NASA mission with possible international contribution	and sky-crane EDLS. Rover will have different instrument suite including a caching system for future potential sample return.
Launch Objective Year, Partners	launch NLT the ye With the Mars Cu demonstrated a s that delivered a re NASA's new Mars 2020, will be muc Curiosity, and will system for future p Image Credit: NA' Table 4.9 Future f Mission- Expected Launch Obj Year, Partners	aar identified. riosity rover, NASA pecialized landing system vady-to-operate rover. srover, scheduled for h more capable than in⊠ clude a caching ootential sample return. SA Planetary Science

Discovery Program	
Discovery— 2020	Small to medium sized competed mission open to all relevant mission concepts. AO planned for FY14.
Discovery— 2022	Small to medium sized competed mission open to all relevant mission concepts. AO planned for FY17.
New Frontiers Program	
New Frontiers 4—TBD	Medium sized competed missions. Candidates for concept studies will be selected from recommendations in the NRC decadal survey; Comet Surface Sample Return, Lunar South Pole-Aitken Basin Sample Return, Saturn Probe, Trojan Tour and Rendezvous, and Venus In Situ Explorer. AO not currently planned.
⊢iaure 4.6 Su	mmary of Planetary Science

Figure 4.6 Summary of Planetary Science Missions

Planetary Science Timeline TIMELINE

Prime Mission Extended Mission Arrival at Target

2000 2003 2006 2009 2012 2015 2018 2021 2024

Excluding MRO, MER/Opportunity, and Mars Odyssey, which are critical to current and future Mars exploration activities, the extended missions depicted in Figure 4.6 are approved for continued operations based on a senior peer review conducted by scientists every two years to determine the scientific value and priority of further mission extensions.

Artist's concept of a Mars sample return mission. Image Credit: Wickman Spacecraft & Propulsion.

On June 10, 2011, NASA's LRO spacecraft pointed its Narrow Angle Cameras to capture a dramatic sunrise view of Tycho crater on the Moon. Image Credit: NASA/GSFC

These superimposed photos of the Moon and a near-Earth asteroid depict the concept behind NASA's Asteroid Redirect Mission. Image Credit: guardianlv.com In addition to advancing NASA's scientific goals, SMD missions and research also generate data and know⊠ edge important to advance NASA's human exploration goals. Since Explorer I discovered the Van Allen radia⊠ tion belts while orbiting the Earth, robotic missions have tested the waters for human exploration, providing useful data as either the product or byproduct of their scien⊠ tific investigations. SMD partnered with the HEOMD to map the Moon's surface in unprecedented detail with LRO, and to measure the radiation environment during the cruise trip to Mars from inside the MSL spacecraft. More recently, SMD and HEOMD established SSERVI to conduct basic and applied research fundamental to un® derstanding the Moon, Mars and its moons, near-Earth asteroids, and the nearspace environments of these target bodies, while advancing human exploration of the solar system. The ISS best embodies the knowledge

NASA is currently developing the first-ever mission to redirect a near-Earth asteroid safely into the Earth-Moon system, and send astronauts to explore it. This mission will bring together the best of NASA's science, technology, and human exploration efforts to achieve the President's goal of sending humans to an asteroid by 2025. SMD's Planetary Science Research and Analysis Program will contribute to this effort by helping to identify a potential asteroid target, using ground- and space-based assets to characterize and select a candidate asteroid. NASA's existing NEO Program is exploring ways to improve del tection and characterization techniques. Furthermore, SMD's Heliophysics Division

elements provide predictive capabilities essential to the protect tion of human and robotic explorers. The LWS and STP Programs explore the interactions between solar phenomena and planetary environments, which prod duce what is known as space weather. Space weather forecasting in interplanetary space is crucial to NASA's human and robotic exploration objectives beyond LEO.

Astrophysics Image Credit: NASA, ESA, and E. Sabbi/STScI

Physics of the Cosmos Program Cosmic Origins Program Figure 4.7 NASA Astrophysics Missions Swift Suzaku (JAXA) F ermi Formulation Implementation Primary Ops Extended Ops XMM-Newton (ESA) Euclid (ESA) Spitzer Hubble Kepler JWST Astro-H (JAXA) NICER (on ISS) Chandra NuSTAR TESS LISA Pathfinder (ESA) SOFIA

Exoplanet Exploration Program

Astrophysics Explorer Program

Astrophysics Research Program

On April 27, 2013, NASA satellites, working in concert with ground-based telescopes, captured never-before-seen details of gamma-ray bursts (GRB) that challenge current theories of how gamma-ray bursts work. These maps show the sky at energies above 100 MeV as seen by NASA Fermi's Large Area Telescope. Left: The sky during a 3-hour interval before GRB 130427A. Right: A 3-hour map ending 30 minutes after the burst. Image Credit: NASA Table 4.10 Current Astrophysics Missions

Mission— Expected Launch Year, Partners	Objective
Physics of the Cosmos Program	
Chandra X-	X-ray observatory that
ray	detects X-ray emission
Observatory-	from very hot regions
1999 (Extended) in	of the Universe such
(Extended) in partnership	as exploded stars, clusters of galaxies,
with the	and matter around
Netherlands	black holes.
X-ray Multi-	
Mirror Mission	X-ray observatory that
(XMM- Newton)—	detects and studies celestial X-ray
1999	sources. NASA
(Extended),	provided elements of
ESA mission	XMM-Newton's
with U.S. participation	instrument package.
participation	Commo rou
Fermi	Gamma-ray observatory that
Gamma-ray	detects gamma-rays
Space Telescope	from the most
(Fermi)—	energetic regions of
2008	the universe including particle jets
(Extended) in	accelerated from black
partnership with DOE,	holes, powerful
France,	magnetic fields of
Germany,	neutron stars, and antimatter bubbles at
Italy, Japan,	the center of the Milky
and Sweden	Way galaxy.
Cosmic	
Origins Program	
	Ultraviolet/visible/near-
	infrared observatory
	infrared observatory that provides
	infrared observatory that provides astronomers with the
Program Hubble Space Telescope	infrared observatory that provides astronomers with the capability of measuring the
Program Hubble Space Telescope (HST)—1990	infrared observatory that provides astronomers with the capability of measuring the acceleration of the
Program Hubble Space Telescope (HST)—1990 (Prime) in	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing
Program Hubble Space Telescope (HST)—1990	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars.
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope—	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope—	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes.
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes.
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes.
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground-
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime)	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground- based telescopes.
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime) in partnership	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground-
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime)	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground- based telescopes. SOFIA is used to study astronomical
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime) in partnership with Germany	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground- based telescopes. SOFIA is used to study astronomical
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime) in partnership with Germany Exoplanet	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground- based telescopes. SOFIA is used to study astronomical
Program Hubble Space Telescope (HST)—1990 (Prime) in partnership with ESA Spitzer Space Telescope— 2003 (Extended) Stratospheric Observatory for Infrared Astronomy (SOFIA)— 2010 (Prime) in partnership with Germany	infrared observatory that provides astronomers with the capability of measuring the acceleration of the universe, observing the formation of planetary systems, and detecting the atmospheric signatures of planets orbiting other stars. Infrared observatory that obtains images and spectra to provide scientists a unique view of the universe and to look into regions of space that are hidden from visible telescopes. Largest airborne observatory in the world, it makes mid and far infrared observations that are impossible for ground- based telescopes. SOFIA is used to study astronomical

Kepler Space Telescope— 2009 (TBD)	High precision optical photometer capable of continuously measuring the brightness of 150,000 stars in order to detect the tiny dimming caused when a planet transits in front of its parent star.
Astrophysics Explorer Program	
Swift—2004 (Extended) in partnership with Italy and the United Kingdom	A multi-wavelength observatory dedicated to the study of Gamma- ray burst (GRB) science. Swift's three instruments have worked together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet, and optical wavebands.
Suzaku— 2005 (Extended) in partnership with Japan	Japanese satellite providing scientists with information to study events in the X- ray energy range. NASA provided one of Suzaku's three instruments.
Nuclear Spectroscopic Telescope Array (NuSTAR) —2012 (Prime) in partnership with Denmark and Italy	High-energy X-ray telescope that is the first focusing high- energy X-ray telescope to orbit Earth and is capable of, among other things, measuring the spin of supermassive black holes and mapping the heavy elements created in a supernova explosion.

TOP LEFT:

In 2013, using the NASA Hubble Space Telescope Wide Field Camera 3, two teams of scientists found faint signatures of water in the atmospheres of five distant planets. This is the first study to conclusively measure and compare the profiles and intensities of these signatures on multiple worlds. To determine what is in the atmosphere of an exoplanet, astronomers watch the planet pass in front of its host star and look at which wavelengths of light are transmitted and which are partially absorbed. This illustration shows a star's light illuminating the atmosphere of a planet. Im[®] ace Credit: NASA/GSFC

TOP RIGHT:

One of the biggest mysteries in astronomy, how stars blow up in supernova explosions, is finally being unraveled with the help of NASA's

NuSTAR spacecraft. The high-energy X-ray observatory has created the first map of radioactive material in a supernova remnant. The results, from a rem® nant named Cassiopeia A, reveal how shock waves likely rip apart massive dying stars. Image Credit: NASA/Caltech

BOTTOM:

Astronomers using the NASA/ESA Hubble Space Telescope have solved the 40-yearStream, a long ribbon of gas (the pink stream in this image) stretching nearly halfway around the Milky Way. New Hubble observations reveal that most of this stream was stripped from the Small Magellanic Cloud some two billion years ago, with a smaller portion originating more recently from its larger neighbour. Image Credit: NASA/StSci Table 4.11 Astrophysics Missions in Development or Formulation Mission— Expected Launch Year, Partners

old mystery of the origin of the Magellanic

Cosmic Origins Program Infrared successor to Hubble to image James Webb first light after the Space Big Bang and the first galaxies to form Telescope (JWST)-NLT in the early 2018* in universe. Toppartnership ranked spacewith ESA and based "Major Initiative" in the Canada 2001 decadal survey. Physics of the Cosmos Program Fliaht

Laser Interferometer Space Antenna (LISA) Pathfinder— 2015 ESA mission with U.S. participation	right demonstration of key technologies for future space- based gravitational wave observatories. NASA provides colloidal micronewton thrusters and a drag-free dynamic controller.
Euclid—2020 ESA mission with U.S. participation Astrophysics Explorer Program	Visible/near infrared observatory to study dark energy. NASA provides detector subsystems for the Near Infrared Spectrophotometer instrument.
ASTRO-H— NLT 2016* JAXA mission with U.S. participation	X-ray observatory to study material in extreme gravitational fields. NASA provides X- ray optics and a Soft X-ray Spectrometer, the primary instrument for JAXA's ASTRO- H observatory.

Neutron Star Interior Composition Explorer (NICER)— NLT 2017*	High precision array of X-ray photometers mounted on the International Space Station to explore the exotic states of matter within neutron stars and reveal their interior and surface compositions. Data will also be used to demonstrate pulsar navigation techniques for STMD.
Transiting Exoplanet Survey Satellite (TESS)— 2018	Array of cameras to discover transiting exoplanets ranging from Earth-sized to gas giants, in orbit around the nearest and brightest stars in the sky. Will find exoplanets as targets for JWST follow-up observations.

Reflects the Agency baseline commitment to launch NLT the year identified.

TOP LEFT: A full-scale JWST sunshield membrane deployed on the membrane test fixture at ManTech International Corporation's facilities in Huntsville, Alabama, ready for a precise measurement of its three dimensional shape. The JWST sunshield comprises five of these layers, each of which has to be precisely spaced with respect to the next.

Image Credit: Northrop Grumman Aerospace Systems

TOP RIGHT:

TESS is an Explorer-class planet finder. In the first-ever spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances.

Image Credit: NASA/GSFC

BOTTOM LEFT:

The first six flight-ready JWST primary mirror segments are prepped to begin final cryogenic testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. Image Credit: NASA/Chris Gunn

Table 4.12 Future Astrophysics Missions

Mission— Expected Launch Year, Partners	Objective
Physics of the Cosmos Program	-
L2—2028 ESA mission with possible U.S. participation	An ESA advanced X- ray observatory to study the hot and energetic universe. NASA will participate in concept studies with ESA and discuss contributing to the mission.

Evenlenet			
Exoplanet Exploration			
Program			
Wide Field			
Infrared	A widefield		
Survey	visible/near infrared		
Telescope	observatory to study dark energy,		
(WFIRST)/	exoplanets, and		
Astrophysics	galactic structure.		
Focused Telescope	Several concepts are		
Assets	being studied,		
(AFTA) —	including a 2.4m		
TBD NASA	version using existing telescope		
mission with	assets and an		
possible	optional		
international contribution	coronagraph.		
Astrophysics Explorer			
Astrophysics	Small to medium		
Explorer—	sized competed mission or MoO. AO		
~2020	planned for FY14.		
Actrophysics	Small to medium		
Explorer—	sized competed		
early/mid	mission or MoO. AO		
2020s	~2016-17.		
	Small to medium		
Astrophysics	sized competed		
Explorer— mid 2020s	mission or MoO. AO		
	~2019-20.		
	nmary of Astrophysics		
Science Missic			
Astrophysics T TIMELINE	imeime		
	Extended Mission		
	06 2009 2012 2015 2018		
2021 2024			
	Great Observatories HST and		
	extended missions depicted in		
	approved for continued		
	sed on a senior peer review scientists every two years to		
	scientific value and priority of		
further mission			
Image of the ne	ewly discovered planet, HD		
	star, which the planet orbits,		
	ked out by a coronagraph and		
	batterns removed during data		
Rameau et al	ge Credit: ESO/VLT and		
	ncept depicts Kepler-186f, the		
	Earth-size planet to orbit a		
	he habitable zone. Image		
Credit: NASA A	Ames/SETI Institute/JPL-		
Caltech			
	currently a topic studied in		
	anetary Science and		
Astrophysics Divisions at NASA, and are a priority according to the decadal surveys of			
	s. The Planetary Science		
	earch and Analysis Program		
and the Astrophysics Division's Exoplanet			
Exploration Program coordinate their			
	studies of exoplanets to determine the		
origins of stellar systems that are similar to our own.			
	als of the Astrophysics		
	e searching for planets and		
	ems around stars in our		
galaxy, determining the percentage of			
	e in or near the habitable		
	variety of stars, and		
characterizing planets around other stars for			
their habitability and other physical character⊠ istics. The Planetary Science			
	cific goals include		
understanding the origin and evolution of			
****	مم مقبد أمسمهم معطفاتهم أبد		

understanding the origin and evolution of the atmospheres of planets and their satellites, under standing the formation and early evolution of planetary systems, and providing the fundamental research and analysis necessary to characterize those planetary syst tems, including their habitability. While the Astrophysics Division emphasizes observational detection and study of exoplanets, the Planetary Science Division primarily focuses on the knowledge necessary for understanding exoplanets through modeling, data analysis, theoretical studies, and ground-based observations. The Kepler mission was developed as a Discovery Program Mission in the Planetary Science Division and is now run by the Astrophysics Division as part of the NASA Exoplanet Exploration Program.

Launched in 2009, Kepler is a spaceborne photomia eter designed to survey distant stars to determine the prevalence of Earthlike planets. Utilizing data

Candidate exoplanets discovered by the Kepler Space Telescope sorted by exoplanet size. Includes all Keplerdiscovered exoplanets as of November 2013.

from the Kepler mission, scientists are approach@ing confirmation of the existence of almost 2000 planets that orbit stars other than our Sun.

The Planetary Science Division provides the baseline parameters that the Astrophysics Division looks for with its Exoplanet Exploration Program missions.

The NASA Astrobiology Institute, a virtual institute jointly funded by the Planetary Science Division and the Astrophysics Division, currently includes the Virtual Planetary Laboratory that is exclusively focused on exoplanets.

Working together, the Planetary Science and Astrophysa ics Divisions hope to lead humankind on a voyage of unprecedented scope and ambition, promising insight into two of our most timeless questions: Where did we come from? Are we alone?

CHAPTER 5

LEFT:

The Suomi NPP satellite acquired this natural-color image of Hurricane Sandy on October 28, 2012. Image Credit: NASA/GSFC/CIMSS and J. Allen

Image Credit: NASA/GSFC

JPSS Program GOES-R Series Program Reimbursable Projects Program

or Formulation	issions in Development
Mission— Expected Launch Year, Partners JPSS Program	Objective
	U.S. civilian
	operational polar
Joint Polar	satellite system
Satellite	providing
System	environmental
(JPSS)-1 2—	observational data
2017	to accurately
2021	predict weather
	three to ten days in
	the future
_	

GOES-R Series Program Geostationary Operational Environmental Satellite-R, S, T U (GOES-R, S, T, U)— 2016, 2017, 2019, 2024 Reimbursable Projects	Next generation of U.S. operational geostationary weather satellites for meteorological and space weather monitoring
Program	
Deep Space Climate Observatory (DSCOVR)— 2015	Primary mission is to monitor space weather, with secondary mission of Earth observation.
Joint Altimetry Satellite Oceanography Network-3 (JASON-3)— 2015	Will extend the next decade of continuous climate record of ocean surface topography.
Meteorological Operational (MetOp) C— 2017	European contribution for the collaborative Initial Joint Polar Orbiting Operational Satellite System
Total Solar Irradiance Sensor-1 (TSIS-1) Instrument (acquisition strategy for hosting TSIS 1 is being evaluated)	Continues the 34- year record of total solar irradiance, enabling scientists to understand the causes of climate change on our planet

TOP:

Jason-3 is an operational ocean altimetry mission designed to pre⊠ cisely measure sea surface height to monitor ocean circulation and sea level. Jason-3 will follow in the tradition of previous NASA-JPL missions such as Topex/Poseidon, Jason-1 and the Ocean Surface Topography Mission/Jason-2. Image Credit: CNES, CLS

MIDDLE:

Building on the success of the Suomi NPP polar-orbiting satel[®] lite, JPSS-1 will feature advanced technologies and instruments to ensure a continuous flow of Earth observations.

Image Credit: Ball Aerospace Technologies Corp.

BOTTOM:

The advanced spacecraft and instrument technology employed by the GOES-R series will provide significant improvements in the detection and observations of environmental phenomena that directly affect public safety, protection of property, and our nation's economic health and prosperity.

Image Credit: NOAA/GOES-R.

CHAPTER 6

LEFT:

The heat shield for NASA's Mars Science Laboratory is the largest ever built for a planetary mission. Technicians in the photo are installing the electronics for the Mars Science Laboratory Entry, Descent and Landing Instrument (MEDLI)—an instrument that collected data about temperature and pressure during descent through the Mars atmosphere.

Image Credit: NASA/JPL

Table 6.1 STMD Programs Supporting NASA Science Technology Development

	echnol	ogy Development	
STMD Technology Program	TRL Range	Examples Relevant to SMD	Future Opportu
NASA Innovative Advanced Concepts (NIAC)	1-3	Advanced concepts such as printable spacecraft, cave- hopping robots, ultra-lightweight optics, ghost imaging	umbrell NRA (REDDI
Space Technology Research Grants (STRG)	1-3	Early Career Faculty/Early Stage Innovations	Compet solicitat through umbrell NRA (REDDI
Center Innovation Fund (CIF)	1-3	Lightweight telescope systems using novel nano- layered synthesized materials, nanosat mobility and autonomy for small bodies exploration, ultra-high- resolution X-ray optics	Selecte NASA Centers
Small Business Innovative Research (SBIR)/Small Business Technology Transfer (STTR)	1-6	Current solicitation has thirty-one subtopics covering instrument and platform technologies relevant to SMD	Compet
Game Changing Development	3-5	SEXTANT, WFIRST-AFTA coronagraph, advanced entry technologies	New sta selected STMD
Centennial Challenges	3-5	Sample return robot to locate and retrieve geologic samples from a wide and varied terrain without human control	Various challen
Small Spacecraft Technology	3-7	Propulsion, communication and other platform technologies for CubeSats and smallsats	Compet solicitat (REDDI
Flight Opportunities	5-7	Technology demonstration on emerging suborbital launch vehicles	Compet solicitat (REDDI

Technology Demonstration 5-7 Missions Laser Communications Relay Demonstration, Deep Space Atomic Clock, Green Propulsion Infusion Mission, Solar Sail Demonstration

Compet solicitat (REDDI

TOP:

Artist's concept of the Lunar Laser Communications Demonstration (LLCD) aboard the LADEE spacecraft. Image Credit: NASA

BOTTOM LEFT:

Artist's concept of the Intelligent Payload Experiment (IPEX) and M-Cubed/COVE-2 (CubeSat Onboard processing Validation Experiment-2), two NASA Earth-orbiting cube satellites ("CubeSats") that were launched as part of the NRO Launch-39 GEMSat (Government Experimental Multi-Satellite) mission from California's Vandenberg Air Force Base on Dec. 5, 2013. CubeSats typically have a volume of exactly one liter.

Image Credit: NASA/JPL

BOTTOM RIGHT:

Currently, space clocks utilize Cesium ions to keep their time synchronous with Earth. Drift is a phenomenon that occurs over time where two clocks will no longer display the same time as one another. To avoid drift and to increase the stability of the ion clock, a new atomic element is needed for use in new space clocks. NASA engineers have been studying use of Mercury ions in satellite space clocks to allow engineers on the ground to more precisely navigate spacecraft and control their onboard instruments.

Image Credit: NASA

CHAPTER 7

LEFT:

Life-size model of JWST on display at the 2013 South by Southwest (SXSW) conference in Austin, Texas. Image Credit: NASA/Jenny Mottar

Students attending Space Camp at the Space and Rocket Center in Huntsville, AL eagerly ask questions of the deep space exploration panel during the public viewing of the flawless launch of the MAVEN mission to Mars on November 18, 2013. Image Credit: NASA/MSFC/Emmett Given

The Global Learning and Observation to Benefit the Environment (GLOBE) program is a worldwide community of students, teachers, scientists and citizens working together to promote the teaching and learning of science, enhance environmental literacy and stewardship, and promote scientific discovery. Image Credit: NASA/GLOBE

Available on iTunes®, YouTube®, and Vimeo®, ScienceCasts are short videos about fun, interesting, and unusual NASA

science topics.

Image Credit: NASA

Science Education Workforce Development

Science On a Sphere® is a room-sized, global display system that uses computers and video projectors to display planetary data onto a six foot di⊠ ameter sphere, analogous to a giant animated globe. Image credit: NASA

Appendices

LEFT:

This long-exposure Hubble Space Telescope image of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. It shows some of the faintest and youngest galaxies ever detected in space. The immense gravity in Abell 2744 acts as a gravitational lens to warp space and brighten and magnify images of nearly 3,000 distant background galaxi ies—some that formed more than 12 billion years ago, not long after the big bang.

Image Credit: NASA/STScI

Appendix A: Status of NRC Decadal Survey Recommendations and/or National Priorities

HELIOPHYSICS Program/Mission Concept Class* Recommendation Status Heliophysics Explorer Program Accelerate and expand program Next AO NET 2016 lonospheric Connection (ICON) Small Complete missions in development In formulation. Launch Readiness Date (LRD): 2017 Global-scale Observations of the Small Complete missions in development In formulation, LRD: 2017 Limb and Disk (GOLD) Solar Terrestrial Probes Program Restructure as higher cadence medium STP-5 LRD: NET 2023 PI-led program

Environment Testbeds (SET-1) Small Complete missions in development In development. LRD: 2016 Solar Orbiter Collaboration (SOC) Medium	
Small Complete missions in development In development. LRD: 2016 Solar Orbiter Collaboration	
missions in development In development. LRD: 2016 Solar Orbiter Collaboration	
development. LRD: 2016 Solar Orbiter Collaboration	
LRD: 2016 Solar Orbiter Collaboration	
Solar Orbiter Collaboration	
Collaboration	
Collaboration	
Complete	
missions in	
development In	
development.	
LRD: NLT 2018^	

Solar Probe Plus Complete In Large missions in developm development LRD: 201

•	As determined by the Heliophysics decard defines mission cla Small (Explorer Cla \$300M; Medium - \$ and Large - \$600M ^ Reflects the Ager commitment to laur identified.	dal surve iss as fol ass) - \$50 3300M-\$6 1 ncy basel	lows: DM- 500M; ine
	EARTH SCI	ENCE	
	Program/Mission Concept	Class	Recommenda
	Earth Systematic Missions Program	<u> </u>	
	Global Precipitation Measurement (GPM)	FM (DS- 2007)	Launch GPM b 2012 (DS-200
	Soil Moisture Active-Passive	Tier 1 Mission	Complete missions in development
	(SMAP)	CCAP	LRD: 2014
	Stratospheric Aerosol and Gas Experiment III (SAGE III)	CCAP	LRD: 2013
	Ice, Cloud and land Elevation Satellite – 2	Tier 1 Mission (DS- 2007)	Launch: 2010-
	Gravity Recovery and		

Recovery and Climate Experiment Follow-on (GRACE FO)	CCAP	LRD: 2016
Surface Water and Ocean Topography (SWOT)	Tier 2 Mission (DS- 2007)	Launch: 2013-
2014 SCIENCE PL	AN	
EARTH SCI	ENCE	

(Continued)	-
Program/Mission Concept	Class	Recommenda
Earth Systematic Missions Program		
(Continued)		
Sustained Solar Irradiance Measurements	National Priority	Responsibility transferred fro NOAA to NAS
Pre-Aerosol, Cloud, ocean Ecosystem (PACE)	CCAP	LRD: 2018
	Tier 1 Mission	Launch: 2010
L-Band Synthetic Aperture Radar	CCAP	LRD: 2017
Vertical Ozone Profiles	National Priority	Responsibility transferred fro NOAA to NAS
Earth's		Responsibility
Radiation Budget	National Priority	transferred fro
-		
Climate Absolute Radiance and Refractivity	Tier 1 Mission (DS- 2007)	Launch: 2010
Observatory	CCAP	LRD: 2017
(CLARREO) Active Sensing	Tier 2	
of CO2 Emissions Over Nights, Days,	Mission (DS- 2007)	Launch: 2013
and Seasons (ASCENDS)	CCAP	LRD: 2019
Geostationary Coastal and Air Pollution Events (GEO-CAPE)	Tier 2 Mission (DS- 2007)	Launch: 2013
Hyperspectral Infrared Imager (HyspIRI)	Tier 2 Mission (DS- 2007)	Launch: 2013
Aerosol-Clouds- Ecosystems	Tier 2 Mission (DS- 2007)	Launch: 2013
Precipitation and All-weather Temperature and Humidity (PATH)	Tier 3 Mission (DS- 2007)	Launch: 2016
Snow and Cold Land Processes (SCLP)	Tier 3 Mission (DS- 2007)	Launch: 2016
Global Atmospheric Composition Mission (GACM)	Tier 3 Mission (DS- 2007)	Launch: 2016
Three- Dimensional Tropospheric Winds (3D- Winds) (demo)	Tier 3 Mission (DS- 2007)	Launch: 2016
Lidar Surface Topography (LIST)	Tier 3 Mission (DS- 2007)	Launch: 2016

Gravity Recovery and Climate Experiment-II (GRACE-II)	Tier 3 Mission (DS- 2007)	Launch: 2016
Future Land Imaging	National Priority	Establish a sustained land imaging capability for t nation
EARTH SCI (Continued)	
Program/Mission Concept Earth System Science Pathfinder Program	Class	Recommenda
Orbiting Carbon Observatory-2 (OCO-2)	CCAP	
Earth Venture Mission (EVM)	Earth Venture (DS- 2007)	Initiate freque low-cost, innovative research and application missions
	CCAP	EVM-2 LRD: 2017
Earth Venture Instrument (EVI)	Earth Venture (DS- 2007)	Initiate freque low-cost, innovative research and application missions
Earth Venture Suborbital (EVS)	Earth Venture (DS- 2007)	Initiate freque low-cost, innovative research and application missions
Earth Science Research Program		

Decadal Survey CCAP: NASA's 2010 Climate-centric			
Architecture Plan ^ Reflects the Agency baseline commitment to			
launch NLT the year identified.			
PLANETAR Program/Mission		NC	
Concept	Class*		Recommend
The Discovery Program	Contin progra with 2y cadend on mission AOs	m rr ce	Next Discov AO in FY14; planning a 3 cadence for future calls
InSight	Small		
New Frontiers Program	7 candid mission with 2 selecter before 2022	ns	Next AO TBI
Origins Spectral Interpretation, Resource Identification and Security Regolith Explorer (OSIRIS-REx) Mars Exploration Program	Mediur	n	
ExoMars Trace Gas Orbiter (ESA)	N/A		
PLANETAR (Continued Program/Mission Concept Mars Exploration Program (Continued)) Class*		commendati
ExoMars Rover (ESA)	N/A		
Mars Astrobiology Explorer-Cacher (MAX-C) Strategic	Large	flag lau 202	priority gship missior nched before 22 @ \$2B in 15 dollars
Missions Jupiter Icy Moons Explorer (JUICE) (ESA)	N/A		
Jupiter Europa Orbiter	Large	flag to b	d priority ship missior be launched fore 2022
Uranus Orbiter and Probe	Large	flag to b	l priority gship missior be launched fore 2022

Concept Osmos Program er Space Antenna Medium Physics of the C ESA-led mission with NASA participation. LRD: 2015 Laser Interferomet (LISA) Pathfinder Euclid Laser Interferometer Space Antenna Large Also recomme 2001 dec survey International X- ray Observatory International X- ray Observatory Cosmic Origins Program James Webb Top prior	Enceladus Orbiter	Large	to be l before	ip missior aunched 2022
Planetary Science decadal survey, which defines mission class as follows: Small - \$450M; Medium - \$450M; \$900M; and Large - \$900M. ^ Reflects the Agency baseline commitment to launch NLT the year identified. ASTROPHYSICS Program/Mission Concept Physics of the C ESA-led mission with NASA participation. LRD: 2015 Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Laser Interferomet (LISA) Cosmic Origins Program James Webb Space Telescope (JWST) ASTROPHYSICS (Continued) Program/Mission Concept ASTROPHYSICS (Continued) Program James Webb Space Large Telescope (JWST) ASTROPHYSICS (Continued) Program Astrophysics Explorers Astrophysics Explorers Program Space Large Telescope Mide Field Infrared Survey Telescope Astrophysics Explorers Program Program Astrophysics Explorers Program Explorers Program Astrophysics Explorers		Large	flagsh to be l	ip missior aunched
Program/Mission Concept Class* Recomm Osmos Program er Space Antenna Medium Physics of the C ESA-led mission with NASA participation. LRD: 2015 Medium Laser Interferomett (LISA) Medium Medium Laser Interferomett (LISA) Large Also recomme 2001 dec survey International X- ray Observatory (LISA) Large Also recomme 2001 dec survey Cosmic Origins Program James Webb Space Telescope (JWST) Top priori 2001 dec survey ASTROPHYSICS (Continued) Program/Mission Class* Recommend rescale survey Mide Field Infrared Survey Telescope (WFIRST) Large Large Large Top priority f large scale mission in 2 decadal survey Wide Field Infrared Survey Telescope (WFIRST) Augment current plans to two medium explorers, two small explorers Planned cac suports NR ecommend	Planetary Science which defines miss follows: Small - \$45 \$450M-\$900M; and ^ Reflects the Ager commitment to laur identified. ASTROPHY	decada ion clas 50M; Me d Large ncy base nch NLT 'SICS	I surve ss as edium - \$900 eline The ye	DM. Bar
Physics of the C Program er Space Antenna Medium Physics of the C ESA-led mission with NASA participation. LRD: 2015 Laser Medium Interferomet (LISA) Medium Laser Also Interferometer Large Quitable Cosmic Origins Program James Webb Large Space Large Cosmic Origins Program Top prior 2001 dec survey Cosmic Origins Program Top prior James Webb Large Top prior Space Large Top prior Concept Class* Recommend Exploration Program Large Top priority f large scale Wide Field Large Top priority f large scale Wide Field Large Top priority f large scale Wide Field Augment current plans to two medium explorers and four Planned cac supports NR ecommend	Program/Mission	Class*		Recomm
Laser Interferomet Medium Pathfinder Euclid Medium Laser Interferometer Large Also Interferometer Space Antenna Large 2001 dec Space Antenna Large Wedium International X- ray Observatory Large 4th priori International X- ray Observatory Large Top prior ZO01 dec Space Large 2001 dec Vide Space Large Survey 2001 dec ASTROPHYSICS (Continued) Program/Mission Recommend Concept Class* Recommend Explanet Large Top priority flarge scale Explanet Large Top priority flarge scale Explorers Large Top priority flarge scale Midde Field Infrared Survey Large Top priority flarge scale Infsrate Survey Large Top priority flarge scale suports NR Program Augment Large Top survey decadal survey Wide Field Nopriority flares to medium suports NR		Progra er Spac Antenn Mediur ESA-le mission NASA particip LRD: 2	ce na n with pation. 2015	
Laser Also Interferometer Large Space Antenna Large 2001 dec survey International X- 4th priori ray Observatory Large International X- 4th priori ray Observatory Large James Webb Top prior Space Large James Webb Top prior Space Large Telescope concept Concept Class* Program Recommend Wide Field Large Infrared Survey Large VWFIRST) Augment Current planned cad strophysics two Explorers Planned cad explorers recommend and four and four	Interferomet (LISA) Pathfinder			Medium
ray Observatory Large 4th phon mission of mission of mission of mission of mission of mission of mission of mission of Program Cosmic Origins Program James Webb Top prior 2001 dec Survey ASTROPHYSICS (Continued) Program/Mission Concept Program/Mission Concept Exoplanet Exploration Program Wide Field Infrared Survey Telescope (WFIRST) Astrophysics Explorers Program Astrophysics Explorers Program Program	Laser Interferometer Space Antenna	Large		recomme 2001 dec
Program James Webb Space Telescope (JWST) ASTROPHYSICS (Continued) Program/Mission Concept Exoplanet Exploration Program Wide Field Infrared Survey Telescope (WFIRST) Augment current plans to two Program Program Wide Field Infrared Survey Telescope (WFIRST) Augment current plans to two Planned cac medium explorers Program Program Program Concept Program Program Program Program Concept Program Program Program Program Program Program Concept Program Program Program Concept Program Program Program Program Program Program Concept Program Concept Program Program Program Program Concept Program Pr	ray Observatory	Large		4th priori mission c
Program/Mission Concept Exploration Program Wide Field Infrared Survey Telescope (WFIRST) Astrophysics Explorers Program Astrophysics Explorers Program Nation in 2 Class* Recommend Infrared Survey Carge Large Magment current plans to two Medium explorers and four	Program James Webb Space Telescope	Large		Top prior 2001 dec survey
Concept Exoplanet Exploration Program Wide Field Infrared Survey Telescope (WFIRST) Augment current plans to two Program Augment current plans to two Planned cac suports NR explorers Program	Program/Mission			
Infrared Survey Telescope (WFIRST) Augment current plans to two Planned cac medium Program Program Augment current plans to two Planned cac supports NR explorers and four	Concept Exoplanet Exploration Program	Class		
Astrophysics Explorers Program Astrophysics Explorers Program Astrophysics Explorers Astrophysics explorers, recommendi explorers and four	Infrared Survey Telescope		lar mis de	ge scale ssion in 20
	Explorers	current plans to two medium explore two sma explore and fou	o Pla n sup ers, rec all ers	oports NR

ASTRO-H	Small	
Neutron star Interior Composition Explorer (NICER) – 2016	Medium	- 🛛
Transiting Exoplanet Survey Satellite (TESS)	Medium	- 🛛
Space Infrared Telescope for Cosmology and Astrophysics (SPICA) Mission (Japan) Astrophysics Research Program	Small	Contribution Japanese mission

Suborbital Small Augmentatic Program

New Worlds Technology Development Program

N/A

New program support post 2020 planet imaging miss

Inflation Probe Support post Technology N/A 2020 cosmic Development background inflation miss

 As determined by the 2010 Astrophysics decadal survey, which defines mission class as follows: Small - \$300M; Medium - \$300M-\$1B; and Large - \$1B.
 Reflects the Agency baseline commitment to launch NLT the year identified.

Appendix B: NASA Strategic Goals and Objectives, SMD Division Science Goals, Decadal Survey Priorities, and SMD Missions

NASA Strategic Objective NASA Strategic	SMD Division Science Goals	Decadal Survey Priority (Associated SMD Division Science Goals in parentheses)	SN (IESF P
Goal: Expand the frontiers of			
knowledge, capability, and			
opportunity in space.			
			A
HELIOPHYSICS			0
Sun and its			J
Earth and the			
solar system, including space weather.			d II

PLANETARY SCIENCE Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere.

- Explore the physical processes in the space environment from the Sun to the Earth and throughout the solar system.
- Advance our understanding of the con[®] nections that link the Sun, the Earth, planetary space environments, and the outer reaches of our solar system.
- Develop the knowledge and capabili ity to detect and predict extreme conditions in space to protect life and society and to safeguard human and robotic explorers beyond Earth.
- Determine the origins of the Sun's activity and predict the variations of the space environment. (1, 3)
- Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and

| () | |

- terrestrial inputs. (2, 3)
- Determine the interaction of the Sun with the solar system and the interstellar medium. (1, 2)
- Discover and characterize fundamen[®] tal processes that occur both within the heliosphere and throughout the universe. (1, 2)
- Explore and observe the objects in the solar system to understand how they formed and evolve.
- Advance the understanding of how the chemical and physical processes in our solar system operate, interact
- Explore and find locations where life could have existed or could exist today.
- Improve our understanding of the origin and evolution of life on Earth to guide our search for life elsewhere.
- Identify and characterize objects in the solar system that pose threats to Earth, or offer resources for human exploration.
- Building New Worlds advance the understanding of solar system beginnings (1, 2)
- Planetary Habitats—search for the requirements for life (3, 4)
- Workings of Solar Systems– reveal planetary processes through time (1, 2, 5)

Appendix B (Continued): NASA Strategic Goals and Objectives, SMD Division Science Goals, Decadal Survey Priorities, and SMD Missions

NASA Strategic Objective SMD Division Science Goals Decadal Survey Priority (Associated SMD Division Science Goals in parentheses

NASA Strategic Goal (Continued): Expand the frontiers of knowledge, capability, and opportunity in space.

ASTROPHYSICS Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars.

NASA Strategic Goal: Advance understanding of Earth and develop technologies to improve the quality of life on our home planet

EARTH SCIENCE Advance knowledge of Earth as a system to meet the challenges of response centric environmental to archite change, and to improve life on our planet.

water cycle evolves 2010 in climate change.

* NASA's climate architecture plan

- 1. Probe the origin and destiny of our unil verse, including the nature of black holes, dark energy, dark matter and gravity.
- 2. Explore the origin and evolution of the galaxies,

- stars and planets that make up our universe.
- Discover and study planets around other stars, and explore whether they could harbor life.
- Search for the first stars, galaxies, and black holes (1, 2)
- Seek nearby habitable planets (3)
- Advance understanding of the fundamen⊠ tal physics of the universe (1, 2)
- Advance the understanding of changes in the Earth's radiation balance, air quality, and the ozone layer that result from changes in atmospheric composition.
- Improve the capability to predict weather and extreme weather events.
- Detect and predict changes in Earth's ecological and chemical cycles, including land cover, biodiversity, and the global carbon cycle.
- Enable better assessment and manage
 ment of water quality and quantity to accurately predict how the global
- Improve the ability to predict climate changes by better understanding the roles and interactions of the ocean, atmosphere, land and ice in the climate system.
- Characterize the dynamics of Earth's sur face and interior, improving the capability to assess and respond to natural hazards and extreme events.
- Further the use of Earth system science research to inform decisions and provide benefits to society.
- Understand the complex, changing planet on which we live, how it supports life, and how human activities affect its ability to do so in the future. (3, 5, 6, 7)
- Revitalize the nation's research satellite system, providing near-term measure- ments to advance science, underpin policy, and expand applications and societal benefits' (5)
- Advance climate research, multiply applications using the full set of available (NASA and non-NASA) satellite measure@ ments for direct societal benefit, and develop/mature technologies required for the next generations of Earth observing missions" (1, 2, 4)

^ The FY15 Budget greatly reduces funding for SOFIA

Appendix C: Program/Strategic Mission Lines 🛛

Program/Strategic Mission Lines	Category*	Objectives Features
-		Make new
Earth Systematic	Strategic	measurem to address
	missions	unanswer
		questions
	(O -h	and reduc remaining
Missions	(Category 1, 2, 3)	uncertainti
	, , - ,	maintain continuity
		measurem
		awaiting transition f
		operationa
		systems managed
		by other
		agencies.
-		Address fo
Earth System Science	Competed,	Earth scier objectives
Science		provide
-		opportunit for new sc
Pathfinder	PI-led	investigati
(ESSP)	missions	Includes the Venture cla
		suborbital
-	Catagoni	campaign
	(Category 3)	small sate and instru
		of opportu
		Regular, lo cost, highl
Discovery	Competed,	focused
Discovery	oompotou,	planetary science
		investigati
	PI-led	any solar s bodies oth
	missions	than the E
		and Sun.
	(Category 2, 3)	
		Focused
		scientific investigati
New Frontiers	Competed,	designed t
		enhance o understan
		of the sola
	PI-led	system;
	missions	competitive selected fr
		among a specified li
•		candidate
	(Category 1, 2)	missions/s
	, _,	targets.
	Stratesia	Maximize scientific re
Mars Exploration	Strategic missions	technology
		infusion, a public
		engageme
	(Category	the robotic exploration
	1,2)	the Red Pl
		Each strate
		mission ha linkages to
		previous
		missions, orbiters ar
		landers

		support ea other's operations
Solar Terrestrial Probes	Strategic missions	Strategic sequence missions to provide understan the
(STP)	(Category 1,2)	fundamen plasma processes inherent ir astrophysi systems.
Living With a Star	Strategic missions	Strategic missions targeted to those aspe the Sun ar space
(LWS)	(Category 1, 2)	environme most direc affect life a society.
Heliophysics Explorers	Competed,	Provide fli opportunit focused so investigati from
	PI-led missions	space in Heliophys
	(Category 2, 3)	
Cosmic Origins	Strategic missions	Strategic missions to understan the familia universe o
	(Category 1, 2, 3)	galaxies, a planets ar formed ov
Physics of the Cosmos	Strategic missions	Strategic missions to explore fundamen questions regarding
	(Category 1, 2, 3)	physical fo and laws o universe including t nature of
		spacetime behavior o matter and energy in extreme environme
		the cosmo parameter governing inflation a evolution
		universe, a the nature dark matte dark energ
Exoplanet Exploration	Strategic missions	Strategic missions t explore ar characteri
<u>.</u>		worlds, en
		spacetim behavior matter ar energy ir extreme environn the cosm paramete governin inflation evolutior universe the natur

	(Category 1, 2, 3)	advanced telescope searches f Earth-like planets, ar discover
		habitable environme around neighborir stars
Astrophysics Explorers	Competed,	Provide flig opportunit focused so investigation
	PI-led missions	from space Astrophysi
	(Category 2, 3)	

 Category 1: > \$1B; Category 2: \$250M - \$1B; Category 3: < \$250M
 The FY15 Budget greatly reduces funding for SOFIA

Appendix D: Science Directorate Decision-Making Process for Missions Ø

Missian
Mission Lifecycle
Phase Description
Spaceflight Mission SMD
spaceflight missions are
initiated by one of two
processes:
Initiation 1. Strategic
missions for SMD are
initially developed as
candidates from multiple
mission investigation
concepts that derive from
various surveys and studies
performed by science
advisory boards and panels,
or that meet specific Agency
Science goals.
2. Competed missions are
those selected through open
AOs, which solicit a scientific
investigation that includes
development of a flight
mission or instruments to fly
on currently planned flight
missions or platforms such
as the ISS.
All proposed missions must
fit within a Science Mission
Directorate goal or specific
objective. Division Directors
then package related
missions into appropriate
programs for further
management consideration.
Pre-formulation* The NASA
Headquarters Science
Management Council
(SMaČ) reviews candidate
science programs and
makes appropriate
recommendations to the
SMD AA who approves new
initiatives for further study.
Approved mission initiatives
must clear Key Decision
Points (KDPs) to determine
readiness before they are
allowed to proceed to the
next mission lifecycle phase.
Missions that do not clear a
KDP are either given more

time to achieve readiness or considered for termination. Phase-A Phase A of Formulation defines mission and system concepts, parameters, constraints, and requirements that will allow the project (Formulation) to be developed on a schedule that meets established goals and can be achieved for a realistic cost. This is done by conducting studies that examine the mission characteristics permitted within identified constraints, and through continued development of enabling technology toward achieving an acceptable TRL. A prime focus is to identify the top-level requirements that the mission must satisfy in order to meet science objectives. The transition to Phase B involves independent review and approvals at multiple levels, culminating in the KDP-B meeting to ensure that the project is ready to proceed from Phase A to Phase B.

Phase-B Phase B of Formulation concentrates on applying results of mission studies and trades completed in Phase A to generate (Formulation) preliminary mission, instrument, and spacecraft designs that satisfy the identified constraints and requirements, and that will allow the project to be developed on a schedule to meet established goals within budget. A descope plan must be prepared to pursue scope reduction and risk management to control cost. It is a time to finalize the requirements and establish the cost caps that will become firm requirements in the Decision Memoranda signed at KDP-С

Phase-C Phase C comprises final mission design and fabrication. While there are no strategic decisions during this stage, the SMD AA

(Final Design and has a vested interest in ensuring that mission implementing organizations carry out assigned tasks effectively, tracking the Fabrication) performance of a project against the program-level requirements and against the schedule and cost cap. Phase-D Phase D includes integration, test and launch. Phase D begins after final assembly of the deliverable system (whether a (Integration, Test, spacecraft or an instrument) commences. It also includes system-level environmental testing, delivery to the launch site for launch Launch) processing, launch operations, and on-orbit checkout. The transition of a flight project from Phase D to Phase E occurs only after on-orbit checkout has been completed, typically 30 to 90 days after launch. Phase-E Phase E comprises operation of the prime or planned mission. At the end of the prime mission, an End of Prime Mission (EOPM) (Operations) review is held to (1) evaluate and document how the mission achieved its Level 1 science requirements and mission success criteria, and (2) identify lessons learned based on the actual operations that can be used to improve future missions. It is not considered a gate review, but the EOPM results are considered when inviting the mission to propose for an extended mission. Mission Cancellation The project will implement a mission within the established cost and schedule baseline. If a mission is expected to exceed its (Pre-Launch) baseline cost and schedule commitments, it can be considered for cancellation by NASA. Mission Termination Missions that continue functioning near the end of their prime operational mission, and any previously extended mission are subject to a Senior Review, which is a science peer review process conducted every two years to determine the scientific value

> and priority of further mission extensions. Those that do not receive a positive outcome for continuation are subject to termination.

 Strategic missions require approval from the NASA Administrator, the Office of Management and Budget, and Congress. Approval by the SMD AA of missions originating from a Program line like Explorers or Discovery is subject to the availability of funds.

Appendix E: References 🛛

NASA Documents National Aeronautics and Space Administration. 2010 Science Plan for NASA's Science Mission Directorate Washington, DC: NASA Headquarters, 2010. Retrieved from http://science.nasa.gov/media/medialibrary/2010/ NASA Strategic Plan 2014. Washington, DC: NASA Headquarters, 2014. Retrieved from http://www.nasa.gov/news/budget/index.html Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space. <u>Washington, DC:</u> NASA Headquarters, 2010. Retrieved from http://science.nasa.gov/media/medialibrary/2010/0 Architecture Final.pdf National Aeronautics and Space Administration, Office of the Chief Engineer. NASA Procedural Requirement 7120.5e: NASA Space Flight Program and Project Management Requirements. 2012. Retrieved from http://nodis3.gsfc.nasa.gov National Aeronautics and Space Administration, Science Mission Directorate, Astrophysics Division. Astrophysics Implementation Plan <u>Washington</u> DC: NASA Headquarters, 2012. Retrieved from http://science.nasa.gov/astrophysics/documents National Aeronautics and Space Administration Advisory Council Science Committee, Astrophysics Subcommittee. Enduring Quests, Daring Visions; NASA Astrophysics in the Next Three Decades _ Washington, DC: NASA Headquarters, 2013. Retrieved from http://science.nasa.gov/astrophysics/documents National Aeronautics and Space Administration Advisory Council Science Committee, Heliophysics Subcommittee. Our Dynamic Space Environment: Heliophysics Science and Technology Roadmap for 2014-2033 . Washington, DC: NASA Headquarters, 2014. Retrieved from http://science.nasa.gov/heliophysics NRC Decadal Surveys National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond . Washington, DC: The National Academies Press, 2007. Retrieved from http://www.nap.edu/catalog.php? record_id=11820 New Worlds, New Horizons in Astronomy and Astrophysics. Washington DC: The National Academies Press, 2010. Retrieved from http://www.nap.edu/catalog.php? record_id=12951 Vision and Voyages for Planetary Science in the Decade 2013-2022. Washington, DC: The National Academies Press, 2011. Retrieved from http://www.nap.edu/catalog.php? record_id=13117 Solar and Space Physics: A Science for a Technological Society. Washington, DC: The National Academies Press, 2013. Retrieved from http://www.nap.edu/catalog.php? record_id=13060 Additional NRC documents National Research Council. An Enabling

Foundation for NASA's Space and Earth Science Missions. <u>Washington, DC: The</u> National Academies Press, 2010. Retrieved from http://www.nap.edu/catalog.php? record id=12822 — Revitalizing NASA's Suborbital

Program: Advancing Science, Driving Innovation, and Developing a Workforce, Washington, DC: The National Academies Press, 2010. Retrieved from http://www.nap.edu/catalog.php?

record_id=12862

Controlling Cost Growth of NASA Earth and Space Science Missions. Washington, DC: The National Academies Press, 2010. Retrieved from http://www.nap.edu/catalog.php? record_id=12946

Assessment of Impediments to Interagency Collaboration on Space and Earth Science Missions. <u>Washington, DC:</u> <u>The National Academies Press, 2011.</u> <u>Retrieved from</u>

http://www.nap.edu/catalog.php? record_id=13042

http://www.nap.edu/catalog.php?

record_id=13405

Additional Documents

Entekhabi, D., G.R. Asrar, A.K. Betts, K.J. Beven, R.L. Bras, C.J. Duffy, T. Dunne, R.D. Koster, D.P. Lettenmaier, D.B. McLaughlin, W.J. Shuttleworth, M.T. van Genuchten, M.-Y. Wei, and E. F. Wood. An agenda for landsurface hydrology research and a call for the second International Hydrological Decade. Bull. Am. Meteorol. Soc. <u>80 (10)</u>: 2043-2058. 1999. doi:

2043-2058. 1999. doi: http://dx.doi.org/10.1175/1520-0477(1999)080<2043:AAFLSH>2.0.CO;2 Executive Office of the President. National Space Policy of the United States of America .2010. Retrieved from http://www.whitehouse.gov/sites/default/files/ pational space policy 6-28-10.0df

national space policy 6-28-10.pdf Executive Office of the President, National Science and Technology Council, Committee on STEM Education. Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan <u>2013. Retrieved from</u> http://www.whitehouse.gov/sites/default/files/micro stratplan 2013.pdf

Stratplan 2013.pdf Leese, J., T. Jackson, A. Pitman, and P. Dirmeyer. Meeting summary: GEWEX/BAHC International Workshop on Soil Moisture Monitoring, Analysis, and Prediction for Hydrometeorological and

Hydroclimatological Applications. Bull. Amer. Meteor. Soc. <u>, 82, 1423–1430, 2001.</u> doi:http://dx.doi.org/10.1175/15208-0477(2001)082<1423:MSGBIW>2.3.CO;2

United Nations, United Nations Environment Programme. The Montreal Protocol on

Substances that Deplete the Ozone Layer .

2007. Retrieved from

http://ozone.unep.org/new_site/en/montreal_proto U.S. Government Accountability Office (GAO). HIGH-RISK SERIES: An Update (GAO-13-283). 2013. Retrieved from http://www.gao.gov/products/GAO-13-283

Appendix E (Continued): References NASA Websites

Airborne Science Program:

https://airbornescience.nasa.gov Earth Observing System Data and

Information System (EOSDIS):

http://earthdata.nasa.gov

NASA Advisory Council Science Subcommittees:

http://science.nasa.gov/about-us/NAC-

subcommittees NASA Solicitation and Proposal Integrated Review and Evaluation System (NSPIRES): http://nspires.nasaprs.com/external National Space Weather Program: http://www.nswp.gov Resources for Earth and Space Science Education: www.nasawavelength.org Science Mission Directorate: http://science.nasa.gov Service and Advice for Research and Analysis (SARA): http://science.nasa.gov/researchers/sara

Appendix F: Acronyms and Abbreviations ⊠

of Meteorological Satellites

COVE-2 Abbreviations Abbreviations Definition and Definition and Acronyms Acronyms LRO Cosmic Associate Ray AA Administrator Telescope for CRaTER the Effects Astronomy and Astrophysics of Radiation AAAC Advisory instrument Committee CREAM Cosmic Ray Advanced Energetics ACE Composition and Mass Explorer Advanced Component Canadian ACT Technology Space Agency CSA Astrophysics CubeSat Focused AFTA Launch Telescope Initiative Assets CSLI Cyclone Aeronomy of Ice Global in the AIM Navigation Mesosphere Satellite CYGNSS System Advanced Information Distributed AIST Active Archive Systems Technologies Centers DAAC Deriving Information on Surface Advanced Conditions Microwave AMSU-A from Sounding Unit-A Column and DISCOVER-AQ Vertically Resolved Observations Announcement Relevant to AO of Opportunity Air Quality Deutsches Zentrum für Astrophysics APRA Research and Luft- und Analysis DLR Raumfahrt (national aeronautics and space Applied Remote research ARSET SEnsing center of the Training Federal Republic of . Germany)

ARTEMIS	Acceleration, Reconnection, Turbulence and DOD Electrodynamics of the Moon's Interaction with the Sun probes DOE	Energy
ASAG	Applied Sciences Advisory Group DRIVE	Diversify, Realize, Integrate, Venture, Educate
ASCENDS	Active Sensing of CO over Nights, Days and Seasons DS 2	Decadal Survey
ATI	Advanced Technology Initiatives DSCOVR	Deep Space Climate Observatory
ATTREX	Airborne Tropical Tropopause Experiment DWSS	Defense Weather Satellite System
AU	Astronomical Unit E/PO	Education and Public Outreach
AVHRR	Advanced Very High Resolution Radiometer EAR	Export Administration Regulations
CALIPSO	Cloud-Aerosol Lidar and Infrared Pathfinder EDLS Satellite Observations	Entry, Descent, Landing System
CARVE	Carbon in Arctic Reservoirs Vulnerability Experiment E LV	Expendable Launch Vehicle
CASI	Climate Adaptation Science Investigators EM	Exploration Mission
CATS	Cloud-Aerosol Transport System EO-1	Earth Observing-1
СВР	Capacity Building Program EOPM	End of Prime Mission
CCAP	NASA's 2010 Climate-Centric Architecture Plan EOS	Earth Observing System
ССМС	Community Coordinated Modeling Center EOSDIS	EOS Data and Information System
CENRS	Committee on Environment, Natural Resources, and Sustainability E PA	Environmental
CERES	Earth's Radiant Energy System ESA	European

CIF	Center Innovation Fund ESD	Earth Science Division	
CINDI	Coupled lon- Neutral Dynamics Investigations ESM	Earth Systematic Missions	
CLARREO	Climate Absolute Radiance and Refractivity Observatory ESSP	Earth System Science Pathfinder	
CNES	Centre National d'Etudes Spatiale ESTO (French Space Agency)	Earth Science Technology Office	
CO 2	Carbon dioxide EUMETS AT	European Organization for the Exploitation	
CoSTEM	Committee on Science Technology, Engineering and Math Education EVI	Earth Venture —Instrument	
Onboard processing Validation Experiment-2 EVM	Earth Venture – Mission		
Abbreviations and Acronyms Definition EVS Earth Venture – Suborbital FAA Federal Aviation Administration FY Fiscal Year GACM Global Atmospheric Composition Mission GAO Government Accountability Office GCIS Global Change Information System GCOM-W1 Global Change Observation Mission—Water satellite (JAXA) GEMS Gravity and Extreme Magnetism Small Explorer GEO Geostationary Orbit GEO-CAPE Geostationary Coastal and Air Pollution Events GEOS Goddard Earth Observing System GLOBE Global Learning and Observation to Benefit the Environment GOES Geostationary Operational Environmental Satellite GOLD Global-scale Observations of the Limb and Disk GOMI Gulf of Mexico Initiative GEMS Gavernment Experimental Multi- Satellite GPM Global Precipitation Measurement GPS Global Positioning System GRACE FO Gravity Recovery and Climate Experiment GRACE FO Gravity Recovery and Interior Laboratory GRB Gamma-ray burst HEOMD Human Exploration and Operations Mission Directorate (NASA) H-GCR Heliophysics-Grand Challenges Research H-GI Heliophysics-Guest Investigator HICO Hyperspectral Imager for the Coastal Cean			

H-TIDeS Heliophysics Technology and Instrument Development for Science IBEX Interstellar Boundary Explorer ICEsat-2 Ice, Clouds and land Elevation Satellite-2 **ICON** Ionospheric Connection IIP Instrument Incubator Program IPEX Intelligent Payload Experiment **IR** Infrared Abbreviations and Acronyms Definition IRIS Interface Region Imaging Spectrograph **ISERV ISS SERVIR Environmental** Research and Visualization System ISON International Scientific Optical Network ISS International Space Station ITAR International Traffic in Arms Regulations IXO International X-ray Observation JASD Joint Agency Satellite Division JASON Joint Altimetry Satellite Oceanography Network JAXA Japanese Space Agency (Japan Aerospace Exploration Agency) JPSS Joint Polar Satellite System JUICE Jupiter Icy Moons Explorer (ESA) JWST James Webb Space Telescope KDP Key Decision Point L1 Lagrange point 1 LADEE Lunar Atmosphere and Dust Environment Explorer LCAS Low-Cost Access to Space LCC life cycle cost LDCM Landsat Data Continuity Mission O Low Earth Orbit LIS Lightning Imaging Sensor LISA Laser Interferometer Space Antenna LIST Lidar Surface Topography LLCD Lunar Laser Communications Demonstration LMSSC Lockheed Martin Space Systems Company LRD Launch Readiness Date LRO Lunar Reconnaissance Orbiter LWS Living With a Star MatISSE Maturation of Instruments for Solar System Exploration MAVEN Mars Atmosphere and Volatile Evolution MAX-C Mars Astrobiology Explorer-Cacher MEP Mars Exploration Program MESSENGER Mercury Surface, Space Environ ment, Geochemistry and Ranging MetOp Meteorological Operational MMS Magnetospheric Multiscale MOMA Mars Organic Molecule Analyzer MOMA-MS Mars Organic Molecule Analyzer Mass Spectrometer MRO Mars Reconnaissance Orbiter Abbreviations and Acronyms Definition MSL Mars Science Laboratory N/A Not applicable NAC NASA Advisory Council NAI NASA Astrobiology Institute NASA National Aeronautics and Space Administration NEO Near Earth Object NEOWISE Near-Earth Object Wide-field Infrared Survey Explorer NESSF NASA Earth and Space Science Fellowship NET No earlier than NEX NASA Earth Exchange NIAC NASA Innovative Advanced Concepts NI-SAR NASA-India Space Research Organization Synthetic Aperture Radar NLT No later than NOAA National Oceanic and Atmospheric Administration NPOESS National Polar-orbiting Operational Environmental Satellite System

NPP National Polar-Orbiting Partnership NRA NASA Research Announcement NRC National Research Council NRO National Reconnaissance Office NSF National Science Foundation NSTC National Science and Technology Council NuSTAR Nuclear Spectroscopic Telescope Array OCE Office of the Chief Engineer OCO Orbiting Carbon Observatory OCT Office of the Chief Technologist OMPS Ozone Mapper and Profiler Suite ORS-3 Operationally Responsive Space-3 OSC Orbital Sciences Corporation OSIRIS-REx Origins, Spectral Interpretation, Resource Identification, Security Regolith Explorer OSTM Ocean Surface Topography Mission PACE Pre-Aerosol, Clouds, and Ecosystems PATH Precipitation and All-weather Temperature and Humidity PDS Planetary Data System PI Principal Investigator PICASSO Planetary Instrument Concepts for the Advance ments of Solar System Observations POES Polar-orbiting Operational Environmental Satellites R&A Research and analysis Abbreviations and Acronyms Definition RapidScat Rapid Scatterometer **RBI** Radiation Budget Investment **RBSP Radiation Belt Storm Probes** REDDI Research, Development, Demonstration, and Infusion **RHESSI Reuven Ramaty High Energy Solar** Spectroscope Imager ROSES Research Opportunities in the Space and Earth Sciences RPP Reimbursable Projects Program RPS Radioisotope Power System SAGE Stratospheric Aerosol and Gas Experiment SAR Synthetic Aperture Radar SARA Service and Advice for Research and Analyses SAT Strategic Astrophysics Technology SBIR Small Business Innovative Research SCLP Snow and Cold Land Processes SDO Solar Dynamics Observatory SDT Science Definition Team SEM Space Environment Monitor SEPOF Science Education and Public Outreach Forum SET Space Environment Testbed SEXTANT Station Explorer for X-ray Timing and Navigation SI International System of Units SLS Space Launch System SMAP Soil Moisture Active/Passive SMD Science Mission Directorate (NASA) SOC Solar Orbiter Collaboration SOFIA Stratospheric Observatory For Infrared Astronomy SOHO Solar and Heliospheric Observatory SORCE Solar Radiation and Climate Experiment SpaceX Space Explorations Technology Corporation SPICA Space Infrared Telescope for Cosmology and Astrophysics SPP Solar Probe Plus SSERVI Solar System Exploration Research Virtual Institute STEM Science, Technology, Engineering and Mathematics STEREO Solar Terrestrial Relations Observatory STMD Space Technology Mission Directorate (NASA) STP Solar Terrestrial Probes

STRG Space Technology Research Grants Abbreviations and Acronyms Definition STTR Small Business Technology Transfer Suomi NPP Suomi-National Polar-orbiting Partnership SWOT Surface Water and Ocean Topography SXSW South by Southwest TBD To be determined TCTE TSI (Total Solar Irradiance) Calibration Transfer Experiment TEMPO Tropospheric Emissions: Monitoring of Pollution TESS Transiting Exoplanet Survey Satellite THEMIS Time History of Events and Macroscale Interactions during Substorms TIMED Thermosphere, lonosphere, Mesosphere, Energetics, and Dynamics TIROS Television Infrared Observation Satellite TRL Technology Readiness Level TRMM Tropical Rainfall Measuring Mission TSI Total Solar Irradiance TSIS Total Solar Irradiance Sensor TWINS Two Wide-angle Imaging Neutral Atom Spectrometers U.S. United States UHF Ultra-High Frequency ULA United Launch Alliance ULDB Ultra Long Duration Balloon **UN United Nations** UNCOPUOS United Nations Committee on the Peaceful Uses of Outer Space USAF United States Air Force USAID United States Agency for International Development USDA United States Department of Agriculture **USGCRP** United States Global Change Research Program USGS United States Geological survey UV ultraviolet VIIRS Visible Infrared Imager Radiometer Suite WFIRST Wide-Field Infrared survey Telescope

WISE Wide-field Infrared survey Explorer XMM X-ray Multi-Mirror Mission